Photosynthesis Research

, 87:323 | Cite as

Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation

Brief communication


From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS␣II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.


energy transfer far red light light harvesting uphill 





relative electron transport rate


fluorescence yield


maximal fluorescence yield of illuminated sample


Photosytem II quantum yield


PAR-value characteristic for light saturation


light harvesting complex


pulse amplitude modulation


photosynthetically active radiation


maximal rate of photosynthesis




  1. Ben-Shem A, Frolow F, Nelson N, (2003) Crystal structure of plant Photosystem I Nature 426: 630–635CrossRefPubMedGoogle Scholar
  2. Butler WL, (1961) A rar red absoring form of chlorophyll, in vivo Biochim Biophys Acta 93: 413–422Google Scholar
  3. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR, (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evulution J Mol Evol 58: 59–68CrossRefGoogle Scholar
  4. Emerson R, (1958) Yield of photosynthesis from simultaneous illumination with pairs of wavelengths Science 127: 1059–1060CrossRefGoogle Scholar
  5. Engelmann TW, (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichts und Assimilation in Pflanzenzellen Bot Zeit 42: 81–93Google Scholar
  6. Fromme P, Jordan P, Krauss N, (2001) Structure of Photosystem I Biochim Biophys Acta 1507:5–31CrossRefPubMedGoogle Scholar
  7. Genty B, Briantais JM, Baker NR, (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence Biochim Biophys Acta 990: 87–92Google Scholar
  8. Gilbert M, Wilhelm C, Richter M, (2000) Bio-optical modelling of oxygen evolution using in vivo fluorescence: Comparison of measured and calculated photosynthesis/irradiance (P-I) curves in four representative phytoplankton species J Plant Physiol 157: 307–314Google Scholar
  9. Halldal P, (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral favia Biol Bull 134: 411–424CrossRefGoogle Scholar
  10. Haxo FT, Blinks R, (1950) Photosynthetic action spectra of marine algae J Gen Physiol 33: 389–422CrossRefPubMedGoogle Scholar
  11. Ihalinen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV, Dekker J, (2002) Pigment organisation and energy transfer dynamics in isolated Photosystem I complexes from Arabidopsis thaliana depleted of the PS I-G, PS I-K, PS I-KL or PS I-N subunit Biophys J 83: 2190–2201CrossRefGoogle Scholar
  12. Jennings RC, Zucchelli G, Croce R, Garlaschi F, (2003) The photochemical trapping rate from red spectral states in PS I-LHC I is determined by thermal activation of energy transfer to bulk chlorophylls Biochim Biophys Acta 1557: 91–98CrossRefPubMedGoogle Scholar
  13. Koehne B, Elli GG, Jennings R, Wilhelm C, Trissl H-W, (1999) Spectroscopic and molecular characterisation of a long wavelengths absorbing antenna of Ostreobium sp Biochim Biophys Acta 1412: 94–107CrossRefPubMedGoogle Scholar
  14. Kolbowski J, Schreiber U, (1995) Computer-controlled phytoplankton analyzer based on a 4-wavelengths PAM chlorophyll fluorometer In: Mathis P, (ed) Photosynthesis: from Light to Biosphere (V) Kluwer Academic Publishers Dordrecht, The Netherlands pp 825–828Google Scholar
  15. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW, (2005) A niche for cyanobacteria containing chlorophyll d Nature 433: 820CrossRefPubMedGoogle Scholar
  16. Melkozernov A, Blankenship RE, (2005) Structural and functional organisation of the peripheral light-harvesting system in Photosystem I Photosynth Res 85: 33–50CrossRefPubMedGoogle Scholar
  17. Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S, (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina Biochim Biophys Acta 1456: 27–34CrossRefPubMedGoogle Scholar
  18. Morosinotto T, Mozzo M, Bassi R, Corce R, (2005) Pigment-Pigment interaction in Lhca4 antenna complex of higher plant Photosystem I J Biol Chem 280: 20612–20619CrossRefPubMedGoogle Scholar
  19. Murata N, (1977) Photosynthetic Organelles In: Miyachi S, Katoh S, Fujita Y, Shibata K, (eds) Special Issue of Plant Cell Physiol Japanese Society of Plant Physiologists, Center for Academic Publications Japan, Tokyo pp 9–13Google Scholar
  20. Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC, (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves Photosynth Res 60: 209–215CrossRefGoogle Scholar
  21. Schatz GH, Brock H, Holzwarth AR, (1988) Kinetic and energetic model for the primary processes in Photosystem II Biophys J 54: 397–405PubMedGoogle Scholar
  22. Schreiber U, (1998) Chlorophyll fluorescence: New instruments for new applications In: Garab G, (ed) Photosynthesis: Mechanisms and Effects (V) Kluwer Academic Publishers Dordrecht, The Netherlands pp 4253–4258Google Scholar
  23. Shubin VV, Bezsmertnaya IN, Karapetyan NV, (1995) Efficient energy transfer from the long-wavelength antenna chlorophylls to P700 in Photosystem I from Spirulina platensis Photochem Photobiol 30: 153–160CrossRefGoogle Scholar
  24. Stahl U, Tusov VB, Paschkenko VZ, Voigt J, (1989) Far red absorbing chlorophylls in PS I have photoprotective function Biochim Biophys Acta 973: 198–204CrossRefGoogle Scholar
  25. Trissl H-W, (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section Photosynth Res 35: 247–263CrossRefGoogle Scholar
  26. Trissl H-W, Wilhelm C, (1993) Why do thylakoid membranes from higher plants form grana stacks? TIBS 18: 415–419PubMedGoogle Scholar
  27. Trissl H-W, Law CR, Cogdell RJ, (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature Biochim Biophys Acta 1412: 149–172CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Biology I / Plant PhysiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations