Photosynthesis Research

, Volume 87, Issue 2, pp 177–194 | Cite as

Land plants equilibrate O2 and CO2 concentrations in the atmosphere

  • Abir U. IgamberdievEmail author
  • Peter J. Lea


The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO2 from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO2 concentration. As a result of both intensive photosynthesis and weathering, CO2 was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O2 concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O2/CO2 ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO2 concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O2/CO2 ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO2 concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O2/CO2 ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O2 and CO2 concentrations by restricting land plant productivity and weathering.


compensation point evolution of atmosphere O2/CO2 ratio Phanerozoic photorespiration 



carbon concentration mechanism


thousand years


million years


parts per million


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B Adams, J Carr, TM Lenton and A White, One-dimensional daisyworld: spatial interactions and pattern formation. J Theor Biol 223 (2003) 505-513PubMedCrossRefGoogle Scholar
  2. NC Ahrens and AH Jahren, Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary boundary: evidence from terrestrial sediments. Palaios 15 (2000) 314-322Google Scholar
  3. M Andrews, PJ Lea, JA Raven and K Lindsey, Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann Appl Biol 145 (2004) 25-40CrossRefGoogle Scholar
  4. OK Atkin, AH Millar, P Gardeström and DA Day, Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In: RC Leegood, TD Sharkey and S Caemmerer von (eds.) Photosynthesis: Physiology and Metabolism,. The Kluwer Academic Publishers, Dordercht: The Netherlands (2000) pp. 153-175Google Scholar
  5. Badger MR and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609–622Google Scholar
  6. J Beer, W Mende and R Stellmacher, The role of sun in climate forcing. Quat Sci Rev 19 (2000) 403-415CrossRefGoogle Scholar
  7. DJ Beerling, Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Natl Acad Sci USA 99 (2002) 12567-12571PubMedCrossRefGoogle Scholar
  8. BJ Beerling and RA Berner, Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle. Proc Natl Acad Sci USA 97 (2000) 12428-12432PubMedCrossRefGoogle Scholar
  9. DJ Beerling, BH Lomax, DL Royer, GR Upchurch and LR Kump, An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc Natl Acad Sci USA 99 (2002) 7836-7840PubMedCrossRefGoogle Scholar
  10. DJ Beerling, CP Osborne and WG Chaloner, Evolution of leaf form in land plants linked to atmospheric CO2 decline in the late Palaeozoic era. Nature 410 (2001) 352-354PubMedCrossRefGoogle Scholar
  11. DJ Beerling and FI Woodward, Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot J Linn Soc 124 (1997) 137-153Google Scholar
  12. MJ Behrenfeld, E Boss, DA Siegel and DM Shea, Carbon-based ocean productivity and phytoplankton from space. Global Biogeochem Cycles 19 (2005) GB1006CrossRefGoogle Scholar
  13. Benton MJ (ed) (1993) The Fossil Record 2, Chapman & Hall, LondonGoogle Scholar
  14. MJ Benton and RJ Twitchett, How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18 (2003) 358-365CrossRefGoogle Scholar
  15. MN Bergman, TM Lenton and AJ Watson, COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304 (2004) 397-437CrossRefGoogle Scholar
  16. CJ Bernacchi, EL Singsaas, C Pimentel, AR Portis Jr and SP Long, Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24 (2001) 253-259CrossRefGoogle Scholar
  17. RA Berner, The rise of plants and their effect on weathering and atmospheric CO2. Science 276 (1997) 544-546CrossRefGoogle Scholar
  18. RA Berner, The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426 (2003a) 323-326CrossRefGoogle Scholar
  19. RA Berner, The rise of trees and their effects on Paleozoic atmospheric CO2 and O2. CR Geosci 335 (2003b) 1173-1177CrossRefGoogle Scholar
  20. RA Berner and DE Canfield, A new model for atmospheric oxygen over Phanerozoic time. Am J Sci 289 (1989) 333-361PubMedGoogle Scholar
  21. RA Berner and Z Kothavala, GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301 (2001) 182-204CrossRefGoogle Scholar
  22. RA Berner, DJ Beerling, R Dudley, JM Robinson and RA Wildman Jr, Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci 31 (2003) 105-134CrossRefGoogle Scholar
  23. RA Berner, ST Petsch, JA Lake, DJ Beerling, BN Popp, RS Lane, EA Laws, MB Westley, N Cassar, FI Woodward and WP Quick, Isotope fractionation and atmospheric oxygen: implications for Phanerozoic O2 evolution. Science 287 (2000) 1630-1633PubMedCrossRefGoogle Scholar
  24. IF Bird, MJ Cornelius and AJ Keys, Affinity of RuBP carboxylases for carbon dioxide and inhibition of the enzymes by oxygen. J Exp Bot 33 (1982) 1004-1013CrossRefGoogle Scholar
  25. CJ Bjerrum and DE Canfield, New insights into the burial history of organic carbon on the early Earth. Geochem Geophys Geosyst 5 (2004) Q08001CrossRefGoogle Scholar
  26. WJ Bond, GF Midgley and FI Woodward, The importance of low atmospheric CO2 in promoting the spread of grasslands and savannas. Global Change Biol 9 (2003) 973-982CrossRefGoogle Scholar
  27. A Brooks and GD Farquhar, Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in light. Planta 165 (1985) 397-406CrossRefGoogle Scholar
  28. Y-P Cen, DH Turpin and DB Layzell, Whole-plant gas exchange and reductive biosynthesis in white lupin. Plant Physiol 126 (2001) 1555-1565PubMedCrossRefGoogle Scholar
  29. JL Cornette, BS Lieberman and RH Goldstein, Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc Natl Acad Sci USA 99 (2002) 7832-7835PubMedCrossRefGoogle Scholar
  30. SA Cowling and RF Sage, Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ 21 (1998) 427-435CrossRefGoogle Scholar
  31. PJ Crutzen, The ‘Anthropocene’. J Phys IV 12 (2002) 1-5Google Scholar
  32. KM Cuffey and F Vimeux, Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412 (2001) 523-527PubMedCrossRefGoogle Scholar
  33. S Bolt de, J Hardie, S Tyerman and CM Ford, Composition and synthesis of raphide crystals and druse crystals in berries of Vitis vinifera L. cv. Cabernet Sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies. Aust J Grape Wine Res 10 (2004) 134-142CrossRefGoogle Scholar
  34. E Diatloff, M Roberts, D Saunders and SK Roberts, Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate permeable channel induced by phosphate starvation. Plant Physiol 136 (2004) 1-14CrossRefGoogle Scholar
  35. G Di Marco, F Manes, D Tricoli and E Vitale, Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO2 concentration in leaves of Quercus ilex L. J Plant Physiol 136 (1990) 538-543Google Scholar
  36. WA Di Michele, HW Pfefferkorn and RA Gastaldo, Response of late Carboniferous and early Permian plant communities to climate change. Ann Rev Earth Planet Sci 29 (2001) 461-487CrossRefGoogle Scholar
  37. Eight glacial cycles from an Antarctic ice core. Nature 429 (2004) 623-628CrossRefGoogle Scholar
  38. JR Evans and S Caemmerer von, Carbon dioxide diffusion inside leaves. Plant Physiol 110 (1996) 339-346PubMedGoogle Scholar
  39. S Ezaki, N Maeda, T Kishimoto, H Atomi and T Imanaka, Presence of a structurally novel type rubulose bisphosphate carboxylase/oxygenase in the␣hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274 (1999) 5078-5082PubMedCrossRefGoogle Scholar
  40. P Falkowski, RJ Scholes, E Boyle, J Canadell, D Canfield, J Elser, N Gruber, K Hibbard, P Hogberg, S Linder, FT Mackenzie, B Moore, T Pedersen, Y Rosenthal, S Seitzinger, V Smetacek and W Steffen, The global carbon cycle: a test of our knowledge of Earth as a system. Science 290 (2000) 291-296PubMedCrossRefGoogle Scholar
  41. GD Farquhar, S Caemmerer von and JA Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980) 78-90CrossRefGoogle Scholar
  42. S Gerber, F Joos and IC Prentice, Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2. Global Change Biol 10 (2004) 1223-1239CrossRefGoogle Scholar
  43. CV Givan, KW Joy and LA Kleczkowski, A decade of photorespiratory nitrogen cycling. Trends Biochem Sci 13 (1988) 433-437PubMedCrossRefGoogle Scholar
  44. OR Gottlieb, MRDB Borin and MAC Kaplan, Biosynthetic interdependence of lignins and secondary metabolites in angiosperms. Phytochemistry 40 (1995) 99-113CrossRefGoogle Scholar
  45. OR Gottlieb and MRDB Borin, Evolution of angiosperms via modulation of antagonisms. Phytochemistry 49 (1998) 1-15PubMedCrossRefGoogle Scholar
  46. A Goyal, Photosynthetic oxygen compensation point (O2, Γ): a new concept. Indian J Plant Physiol 6 (2001) 1-9Google Scholar
  47. MA Green and SC Fry, Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433 (2005) 83-87PubMedCrossRefGoogle Scholar
  48. U Heber, R Bligny, P Streb and R Douce, Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Bot Acta 109 (1996) 307-315Google Scholar
  49. AM Hetherington and FI Woodward, The role of stomata in sensing and driving environmental change. Nature 424 (2003) 901-908PubMedCrossRefGoogle Scholar
  50. VAR Huss and HD Kranz, Charophyte evolution and the origin of land plants. Plant Syst Evol 11 (1997) 103-114Google Scholar
  51. S Husted, M Mattsson, C Möllers, M Wallbraun and JK Schjoerring, NH 4 + production in leaves of wild type and glutamine synthetase 2 antisense oilseed rape. Plant Physiol 130 (2002) 989-998PubMedCrossRefGoogle Scholar
  52. AU Igamberdiev, NV Bykova, PJ Lea and P Gardeström, The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111 (2001) 427-438PubMedCrossRefGoogle Scholar
  53. AU Igamberdiev and P Gardeström, Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta 1606 (2003) 117-125PubMedCrossRefGoogle Scholar
  54. AU Igamberdiev and PJ Lea, The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60 (2002) 651-674PubMedCrossRefGoogle Scholar
  55. AU Igamberdiev, TN Mikkelsen, P Ambus, H Bauwe, PJ Lea and P Gardeström, Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81 (2004) 139-152CrossRefGoogle Scholar
  56. AU Igamberdiev, AA Zemlyanukhin and IV Meshcheryakova, Extraglyoxysomal form of isocitrate lyase in higher plants. Soviet Plant Physiol 33 (1986) 852-858Google Scholar
  57. DL Jones, Organic acids in the rhizosphere – a critical review. Plant Soil 205 (1998) 25-44CrossRefGoogle Scholar
  58. TP Jones, 13C enriched lower carboniferous fossil plants from Donegal, Ireland – carbon isotope constraints on taphonomy, diagenesis and paleoenvironment. Rev Paleobot Palynol 81 (1994) 53-64CrossRefGoogle Scholar
  59. DB Jordan and WL Ogren, Species variation in the specificity of ribulose-bisphosphate carboxylase-oxygenase. Nature 291 (1981) 513-515CrossRefGoogle Scholar
  60. DB Jordan and WL Ogren, Species variation in kinetic-properties of ribulose 1,5-bisphosphate carboxylase oxygenase. Arch Biochem Biophys 227 (1983) 425-433PubMedCrossRefGoogle Scholar
  61. DB Jordan and WL Ogren, The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase oxygenase – dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161 (1984) 308-313CrossRefGoogle Scholar
  62. A Kaplan and L Reinhold, CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50 (1999) 539-570PubMedCrossRefGoogle Scholar
  63. KG Karol, RM McCourt, MT Cimino and CF Delwiche, The closest living relatives of land plants. Science 294 (2001) 2351-2353PubMedCrossRefGoogle Scholar
  64. SS Kent, M Andre, L Cournac and J Farineau, An integrated model for the determination of the Rubisco specificity factor, respiration in the light and other photosynthetic parameters of C3 plants in situ. Plant Physiol Biochem 30 (1992) 625-637Google Scholar
  65. SS Kent and MJ Tomany, The differential of the ribulose 1,5-bisphosphate carboxylase oxygenase specificity factor among higher plants and the potential for biomass enhancement. Plant Physiol Biochem 33 (1995) 71-80Google Scholar
  66. LF Khilyuk and GV Chilingar, Global warming: are we confusing cause and effect?. Energy Sour 25 (2003) 357-370CrossRefGoogle Scholar
  67. T Kihara, T Wada, Y Suzuki, T Hara and H Koyama, Alteration of citrate metabolism in cluster roots of white lupine. Plant Cell Physiol 44 (2003) 901-908PubMedCrossRefGoogle Scholar
  68. AH Knoll, Proterozoic and early Cambrian protists – evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91 (1994) 6743-6750PubMedCrossRefGoogle Scholar
  69. Z Kothavala, RJ Oglesby and B Saltzman, Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2. Geophys Rev Lett 26 (1999) 209-212CrossRefGoogle Scholar
  70. WA Laing, WL Ogren and RH Hageman, Regulation of soybean net photosynthetic CO2 fixation, by interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54 (1974) 678-685PubMedCrossRefGoogle Scholar
  71. EA Laws, BN Popp, N Cassar and J Tanimoto, 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct Plant Biol 29 (2002) 323-333CrossRefGoogle Scholar
  72. TM Lenton, Gaia and natural selection. Nature 394 (1998) 439-447PubMedCrossRefGoogle Scholar
  73. TM Lenton, The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Global Change Biol 7 (2001) 613-629CrossRefGoogle Scholar
  74. TM Lenton and AJ Watson, Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys Rev Lett 31 (2004) L05202CrossRefGoogle Scholar
  75. JE Lovelock, Gaia as seen through the atmosphere. Atmos Environ 6 (1972) 579-580CrossRefGoogle Scholar
  76. JC McElwain, DJ Beerling and FI Woodward, Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285 (1999) 1386-1390PubMedCrossRefGoogle Scholar
  77. SV Meyen, Geography of macroevolution in higher plants. Zhurnal Obshchei Biol [J Gen Biol] 48 (1987) 291-309Google Scholar
  78. KL Moulton, J West and RA Berner, Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300 (2000) 539-570CrossRefGoogle Scholar
  79. FE Müller-Karger, R Varela, R Thunell, R Luerssen, CM Hu and JJ Walsh, The importance of continental margins in the global carbon cycle. Geophys Rev Lett 32 (2005) L01602CrossRefGoogle Scholar
  80. B Osmond, M Badger, K Maxwell, O Bjorkman and R Leegood, Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2 (1997) 119-121CrossRefGoogle Scholar
  81. MAJ Parry, PJ Andralojc, RAC Mitchell, PJ Madgwick and AJ Keys, Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54 (2003) 1321-1333PubMedCrossRefGoogle Scholar
  82. PN Pearson, PW Ditchfield, J Singano, KG Harcourt-Brown, CJ Nicholas, RK Olsson, NJ Shackleton and MA Hall, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413 (2001) 481-487PubMedCrossRefGoogle Scholar
  83. JR Petit, J Jouzel, D Raynaud, NI Barkov, JM Barnola, I Basile, M Bender, J Chappellaz, M Davis, G Delaygue, M Delmotte, VM Kotlyakov, M Legrand, VY Lipenkov, C Lorius, L Pepin, C Ritz, E Saltzman and M Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399 (1999) 429-436CrossRefGoogle Scholar
  84. Z Ramazanov and J Cardenas, Involvement of photorespiration and glycolate pathway in carbonic anhydrase induction and inorganic carbon concentration in Chlamydomonas reinhardtii. Physiol Plant 84 (1992) 502-508CrossRefGoogle Scholar
  85. GH Rau, U Riebesell and D Wolf-Gladrow, A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Marine Ecol Prog Ser 133 (1996) 275-285CrossRefGoogle Scholar
  86. GH Rau, U Riebesell and D Wolf-Gladrow, CO2aq-dependent photosynthetic 13C fractionation in the ocean: a model versus measurements. Global Biogeochem Cycles 11 (1997) 267-278CrossRefGoogle Scholar
  87. JA Raven, Plant response to high O2 concentrations – relevance to previous high O2 episodes. Global Planet Change 97 (1991) 19-38CrossRefGoogle Scholar
  88. JA Raven, Carbon fixation and carbon availability in marine phytoplankton. Photosynth Res 39 (1994) 259-273CrossRefGoogle Scholar
  89. JA Raven, Land plant biochemistry. Phil Trans R Soc London B 355 (2000) 833-846CrossRefGoogle Scholar
  90. JA Raven, Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynth Res 77 (2003) 155-171PubMedCrossRefGoogle Scholar
  91. JA Raven and PG Falkowski, Oceanic sinks for atmospheric CO2. Plant Cell Environ 22 (1999) 741-755CrossRefGoogle Scholar
  92. JA Raven, H Griffiths, SM Glidewell and T Preston, The mechanism of oxalate biosynthesis in higher plants – investigations with the stable isotopes 18O and 13C. Proc R Soc London B – Biol Sci 216 (1982) 87-101Google Scholar
  93. GJ Retallack, Postapocalyptic greenhouse revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111 (1999) 52-70CrossRefGoogle Scholar
  94. GJ Retallack, A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411 (2001) 287-300PubMedCrossRefGoogle Scholar
  95. J Rial, Abrupt climate change: chaos and order at orbital and millennial scales. Global Planet Change 41 (2004) 95-109CrossRefGoogle Scholar
  96. U Riebesell, I Zondervan, B Rost, PD Tortell, RE Zeebe and FMM Morel, Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407 (2000) 364-367PubMedCrossRefGoogle Scholar
  97. DH Rothman, Global biodiversity and the ancient carbon cycle. Proc Natl Acad Sci USA 98 (2001) 4305-4310PubMedCrossRefGoogle Scholar
  98. DH Rothman, Atmospheric carbon dioxide levels for the last 500 million years. Proc Natl Acad Sci USA 99 (2002) 4167-4171PubMedCrossRefGoogle Scholar
  99. DL Royer, RA Berner and DJ Beerling, Phenerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54 (2001a) 349-392CrossRefGoogle Scholar
  100. DL Royer, SL Wing, DJ Beerling, DW Jolley, PL Koch, LJ Hickey and RA Berner, Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292 (2001b) 2310-2313CrossRefGoogle Scholar
  101. R Rye and HD Holland, Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298 (1998) 621-672PubMedGoogle Scholar
  102. RF Sage, The evolution of C4 photosynthesis. New Phytol 161 (2004) 341-370CrossRefGoogle Scholar
  103. Sage RF and Coleman JR (2001) Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci 6: 18–24Google Scholar
  104. RF Sage and DS Kubien, Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77 (2003) 209-225PubMedCrossRefGoogle Scholar
  105. S Sandroni, P Bacci, G Boffa, U Pellegrini and A Ventura, Tropospheric ozone in the pre-alpine and alpine regions. Sci Total Environ 156 (1994) 169-182CrossRefGoogle Scholar
  106. L Savard, P Li, SH Strauss, MW Chase, M Michaud and J Bousuett, Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91 (1994) 5163-5167PubMedCrossRefGoogle Scholar
  107. JK Schjoerring, S Husted, G Mack, KH Nielsen, J Finnemann and M Mattsson, Physiological regulation of plant-atmosphere ammonia exchange. Plant Soil 221 (2000) 95-102CrossRefGoogle Scholar
  108. RJ Scholes and IR Noble, Climate change – Storing carbon on land. Science 294 (2001) 1012-1013PubMedCrossRefGoogle Scholar
  109. TD Sharkey, Estimating the rate of photorespiration in leaves. Physiol Plant 73 (1988) 147-152CrossRefGoogle Scholar
  110. MR Shaw, ES Zavaleta, NR Chiariello, EE Cleland, HA Mooney and CB Field, Grassland responses to global environmental changes suppressed by elevated CO2. Science 298 (2002) 1987-1990PubMedCrossRefGoogle Scholar
  111. DM Sigman and EA Boyle, Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407 (2001) 859-869CrossRefGoogle Scholar
  112. H Strauss and W Peters-Kottig, The Paleozoic to Mesozoic carbon cycle revisited: the carbon isotopic composition of terrestrial organic matter. Geochem Geophys Geosyst 4 (2003) 1083CrossRefGoogle Scholar
  113. E Tajika, Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet Sci Lett 214 (2003) 443-453CrossRefGoogle Scholar
  114. NE Tolbert, C Benker and E Beck, The oxygen and carbon dioxide compensation points of C3 plants: possible role in regulating atmospheric oxygen. Proc Natl Acad Sci USA 92 (1995) 11230-11233PubMedCrossRefGoogle Scholar
  115. PD Tortell, Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45 (2000) 744-750Google Scholar
  116. K Uemura, Anwaruzzaman, S Miyachi and A Yokota, Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233 (1997) 568-571PubMedCrossRefGoogle Scholar
  117. IG Usoskin, SK Solanki, M Schüssler, K Mursula and K Alanko, Milennium-scale sunspot number reconstruction: evidence for an unusually active sun since the 1940s. Phys Rev Lett 91 (2003) 211101PubMedCrossRefGoogle Scholar
  118. N Vavilov, Origin and Geography of Cultivated Plants. Cambridge: Cambridge Univ. Press (1926).Google Scholar
  119. Vernadsky VI [1998] Biosphere (English Translation). Copernicus Books, Springer-Verlag, New York. Originally published in 1926Google Scholar
  120. von Bloh W, Bounama C and Franck S (2003) Cambrian explosion triggered by geosphere-biosphere feedbacks. Geophys Res Lett 30: 1963Google Scholar
  121. S Caemmerer von and RT Furbank, The C4 pathway: an efficient CO2 pump. Photosynth Res 77 (2003) 191-207CrossRefGoogle Scholar
  122. NA Walker, FA Smith and IR Cathers, Bicarbonate assimilation by freshwater Charophytes and higher plants. I. Membrane transport of bicarbonate ions is not proven. J Membr Biol 57 (1980) 51-58CrossRefGoogle Scholar
  123. AJ Watson and JE Lovelock, Biological homeostasis of the global environment – the parable of daisyworld. Tellus Ser B – Chem Phys Meteorol 35 (1983) 284-289CrossRefGoogle Scholar
  124. SM Whitney and TJ Andrews, Photosynthesis and growth of tobacco with a substituted bacterial Rubisco mirror the properties of the introduced enzyme. Plant Physiol 133 (2003) 287-294PubMedCrossRefGoogle Scholar
  125. SM Whitney, P Baldett, GS Hudson and TJ Andrews, Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26 (2001) 535-547PubMedCrossRefGoogle Scholar
  126. RA Wildman, LJ Hickey, MB Dickinson, RA Berner, JM Robinson, M Dietrich, RH Essenhigh and CB Wildman, Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 32 (2004) 457-460CrossRefGoogle Scholar
  127. J Zachos, M Pagani, L Sloan, E Thomas and K Billups, Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292 (2001) 686-693PubMedCrossRefGoogle Scholar
  128. ES Zavaleta, RJ Hobbs and HA Mooney, Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16 (2001) 454-459CrossRefGoogle Scholar
  129. ES Zavaleta, MR Shaw, NR Chiariello, BD Thomas, EE Cleland, CB Field and HA Mooney, Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73 (2003a) 585-604CrossRefGoogle Scholar
  130. ES Zavaleta, MR Shaw, NR Chiariello, HA Mooney and CB Field, Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci USA 100 (2003b) 7650-7654CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Plant ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Department of Biological SciencesUniversity of LancasterUK

Personalised recommendations