Photosynthesis Research

, Volume 85, Issue 3, pp 341–357 | Cite as

Dynamics of Fluxes Through Photosynthetic Complexes in Response to Changing Light and Inorganic Carbon Acclimation in Synechococcus elongatus

  • Tyler D.B. MacKenzie
  • Jeanette M. Johnson
  • Douglas A. CampbellEmail author
Regular paper


Cyanobacteria acclimate to environmental inorganic carbon (Ci) concentrations through re-organisations of photosynthetic function and the induction of carbon concentrating mechanisms (CCMs), which alter and constrain their subsequent acclimation to changing light. We grew cells acclimated to high Ci (4 mM) or low Ci (0.02 mM), shifted them from 50 μmol m−2 s−1 to 500 μmol m−2 s−1, and quantified their photosynthetic performance in parallel with quantitation of allocations to key indicator macromolecules. Pigments cell−1 declined, PsbA (PS II), AtpB (ATP Synthase), RbcL (Rubisco) and GlnA (Glutamine Synthetase) increased, and PsaC (PS I) remained stable through the light shift. The increase in these protein pools was slower and smaller in low Ci cells, but acted in both cell types to re-normalise the electron fluxes through the catalytic complexes back toward values before the light shift (for PsbA and GlnA) or even below the initial flux per complex (for RbcL). In contrast, an increased electron flux per PsaC was sustained for at least 6 h after the increase in light. Initially, high levels of PS II cell−1 and PS II connectivity in high Ci cells caused a more rapid net photoinactivation of PS II in high Ci cells than in low Ci cells, depressing the rate of PS II-specific electron transport (PS II ETR) to levels similar to linear ETR (net O2 evolution minus respiration). In low Ci cells, PS II ETR remained in excess of linear ETR and may have helped maintain CCM activity. The pool sizes of PsbA, AtpB and GlnA correlated with cellular growth rate, and changed at similar rates in high Ci and low Ci cells when expressed on a generational rather than chronological timescale, which has implications for differing ecology of high and low Ci cells under variable natural light.

Key words:

ATP Synthase CCM light acclimation photosynthetic electron transport protein quantitation PS I PS II Rubisco Synechococcus elongatus PCC 7942 



carbon concentrating mechanism


inorganic carbon concentration


electron transport rate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfonso, M, Perewoska, I, Kirilovsky, D 2000Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b6/f complexPlant Physiol122505515CrossRefPubMedGoogle Scholar
  2. Allen, JF 2003Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chainTrends Plant Sci81519CrossRefPubMedGoogle Scholar
  3. Aro, E-M, Virgin, I, Andersson, B 1993Photoinhibition of Photosystem II. Inactivation, protein damage and turnoverBiochim Biophys Acta1143113134PubMedGoogle Scholar
  4. Badger, M, Price, G 2003CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolutionJ Exp Bot54609622CrossRefPubMedGoogle Scholar
  5. Behrenfeld, MJ, Prasil, O, Kolber, ZS, Babin, M, Falkowski, PG 1998Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibitionPhotosynth Res58259268CrossRefGoogle Scholar
  6. Bernhardt, K, Trissl, H-W 1999Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally?Biochim Biophys Acta1409125149PubMedGoogle Scholar
  7. Berry, S, Schneider, D, Vermaas, W, Rogner, M 2002Electron transport routes in whole cells of Synechocystis sp. strain PCC 6803: The role of the cytochrome bd-type oxidaseBiochemistry4134223429CrossRefPubMedGoogle Scholar
  8. Bowes, G 1991Growth at elevated CO2 – photosynthetic responses mediated through rubiscoPlant Cell Environ14795806Google Scholar
  9. Burns RA, MacDonald CD, McGinn PJ and Campbell DA (2005a) High inorganic carbon disrupts photosynthetic acclimation to low temperature in the cyanobacterium Synechococcus PCC7942. J Phycol (in press)Google Scholar
  10. Burns RA, MacKenzie TDB and Campbell DA (2005b) Inorganic carbon repletion constrains steady-state light acclimation in the cyanobacterium Synechococcus elongatus. J Phycol (in press)Google Scholar
  11. Campbell, D, Clarke, A, Gustafsson, P, Oquist, G 1999Oxygen-dependent electron flow influences Photosystem II function and psbA gene expression in the cyanobacterium Synechococcus sp. PCC 7942Physiol Plant105746755CrossRefGoogle Scholar
  12. Campbell, DA, Cockshutt, AM, Porankiewicz-Asplund, J 2003Analysing photosynthetic complexes in uncharacterized species or mixed microalgal communities using global antibodiesPhysiol Plant119322327CrossRefGoogle Scholar
  13. Chitnis, PR 2001Photosystem I: function and physiologyAnn Rev Plant Physiol Plant Mol Biol52593626CrossRefGoogle Scholar
  14. Chow, W, Lee, HY, Park, YI, Park, YM, Hong, YN, Anderson, J 2002The role of inactive Photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivoPhil Trans R Soc Lond B35714411450CrossRefGoogle Scholar
  15. Clarke, A, Campbell, D, Gustafsson, P, Öquist, G 1995Dynamic-responses of Photosystem II and phycobilisomes to changing light in the cyanobacterium Synechococcus sp. PCC 7942Planta197553562CrossRefGoogle Scholar
  16. Cole, J, Caraco, N, Kling, G, Kratz, T 1994Carbon dioxide supersaturation in the surface waters of lakesScience26515681570Google Scholar
  17. Dai, S, Johansson, K, Miginiac-Maslow, M, Schürmann, P, Eklund, H 2004Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin:thioredoxin reductase and target enzymesPhotosynth Res79233248CrossRefGoogle Scholar
  18. Marsac, NT, Lee, HM, Hisbergues, M, Castets, AM, Bedu, S 2001Control of nitrogen and carbon metabolism in cyanobacteriaJ Appl Phycol13287292CrossRefGoogle Scholar
  19. Dilley, RA 2004On why thylakoids energize ATP formation using either delocalized or localized proton gradients – a Ca 2 + mediated role in thylakoid stress responsesPhotosynth Res80245263CrossRefGoogle Scholar
  20. Eley, JH 1980Effect of carbon dioxide concentration on pigmentation in the blue-green alga Anacystis nidulansPlant Cell Physiol12311316Google Scholar
  21. Falkowski, P, Raven, J 1997Aquatic PhotosynthesisBlackwellOxfordGoogle Scholar
  22. Ferreira, KN, Iverson, TM, Maghlaoui, K, Barber, J, Iwata, S 2004Architecture of the photosynthetic oxygen-evolving centerScience30318311838PubMedGoogle Scholar
  23. Flameling, I, Kromkamp, J 1998Light dependence of quantum yields for PS II charge separation and oxygen evolution in eucaryotic algaeLimnol Oceanogr43284297Google Scholar
  24. Foyer, C, Noctor, G 2000Oxygen processing in photosynthesis: regulation and signallingNew Phytol146359388CrossRefGoogle Scholar
  25. Fujita, Y 1997A study on the dynamic features of photosystem stoichiometry: Accomplishments and problems for future studiesPhotosynth Res538393CrossRefGoogle Scholar
  26. Geel, C, Versluis, W, Snel, J 1997Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flowPhotosynth Res516170CrossRefGoogle Scholar
  27. Gilbert, M, Wilhelm, C, Richter, M 2000Bio-optical modelling of oxygen evolution using in vivo fluorescence: Comparison of measured and calculated photosynthesis/irradiance (P–I) curves in four representative phytoplankton speciesJ Plant Phys157307314Google Scholar
  28. Harano, K, Ishida, H, Kittaka, R, Kojima, K, Inoue, N, Tsukamoto, M, Satoh, R, Himeno, M, Iwaki, T, Wadano, A 2003Regulation of the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC in a cyanobacterium, Synechococcus PCC7942Photosynth Res785965CrossRefGoogle Scholar
  29. Henley, WJ 1993Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changesJ Phycol29729739CrossRefGoogle Scholar
  30. Hihara, Y, Sonoike, K, Ikeuchi, M 1998A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high lightPlant Physiol11712051216CrossRefPubMedGoogle Scholar
  31. Huner, NPA, Oquist, G, Sarhan, F 1998Energy balance and acclimation to light and coldTrends Plant Sci3224230CrossRefGoogle Scholar
  32. Imamura, S, Asayama, M, Takahashi, H, Tanaka, K, Takahashi, H, Shirai, M 2003Antagonistic dark/light-induced SigB/SigD, group 2 sigma factors, expression through redox potential and their roles in cyanobacteriaFEBS Lett554357362CrossRefPubMedGoogle Scholar
  33. Kana, T 1992Relationship between photosynthetic oxygen cycling and carbon assimilation in Synechococcus WH7803 (Cyanophyta)J Phycol28304308CrossRefGoogle Scholar
  34. Kana, R, Lazár, D, Prásil, O, Naus, J 2002Experimental and theoretical studies on the excess capacity of Photosystem IIPhotosynth Res72271284CrossRefGoogle Scholar
  35. Kolber, Z, Falkowski, PG 1993Use of active fluorescence to estimate phytoplankton photosynthesis in situLimnol Oceanogr3816461665Google Scholar
  36. Kolber, Z, Prasil, O, Falkowski, PG 1998Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocolsBiochim Biophys Acta136788106PubMedGoogle Scholar
  37. Kramer, DM, Johnson, G, Kiirats, O, Edwards, GE 2004New fluorescence parameters for the determination of QA redox state and excitation energy fluxesPhotosynth Res79209218CrossRefGoogle Scholar
  38. Kromkamp, JC, Forster, RM 2003The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminologyEur J Phycol38103112CrossRefGoogle Scholar
  39. Lee, H, Hong, Y, Chow, W 2001Photoinactivation of Photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leavesPlanta212332342PubMedGoogle Scholar
  40. Li, H, Sherman, LA 2000A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803J Bacteriol18242684277CrossRefPubMedGoogle Scholar
  41. Li, L-A, Tabita, F 1994Transcription Control of Ribulose Bisphosphate Carboxylase/Oxygenase Activase and Adjacent Genes in Anabaena SpeciesJ Bacteriol17666976706PubMedGoogle Scholar
  42. Li, Q, Canvin, D 1997lnorganic carbon accumulation stimulates linear electron flow to artificial electron acceptors of Photosystem I in air-grown cells of the cyanobacterium Synechococcus UTEX 625Plant Physiol11412731281PubMedGoogle Scholar
  43. MacKenzie, TDB, Burns, RA, Campbell, DA 2004Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatusPlant Phys13633013312CrossRefGoogle Scholar
  44. Manodori, A, Melis, A 1984Photochemical apparatus organisation in Anacystis nidulans (Cyanophyceae)Plant Physiol746771Google Scholar
  45. Marques, S, Merida, A, Candau, P, Florencio, FJ 1992Light-mediated regulation of gluatamine-synthetase activity in the unicellular cyanobacterium Synechococcus sp. PCC 6301Planta187247253Google Scholar
  46. Masojídek, J, Grobbelaar, J, Pechar, L, Koblizek, M 2001Photosystem II electron transport rates and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycleJ Plankton Res235766CrossRefGoogle Scholar
  47. Mauzerall, D, Greenbaum, NL 1989The absolute size of a photosynthetic unitBiochim Biophys Acta974119140Google Scholar
  48. Mayo, WP, Elrifi, IR, Turpin, DH 1989The relationship between ribulose bisphosphate concentration, dissolved inorganic carbon (DIC) transport and DIC-limited photosynthesis in the cyanobacterium Synechococcus leopoliensis grown at different concentrations of inorganic carbonPlant Physiol90720727Google Scholar
  49. McConnell, M, Koop, R, Vasil’ev, S, Bruce, D 2002Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transitionPlant Physiol13012011212PubMedGoogle Scholar
  50. Miller, A, Espie, G, Canvin, D 1988Active-transport of inorganic carbon increases the rate of O2 photoreduction by the cyanobacterium Synechococcus UTEX 625Plant Physiol8869Google Scholar
  51. Miskiewicz, E, Ivanov, AG, Huner, NPA 2002Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperaturePlant Physiol13014141425CrossRefPubMedGoogle Scholar
  52. Müller, C, Reuter, W, Wehrmeyer, W, Dau, H, Senger, H 1993Adaptation of the photosynthetic apparatus of Anacystis nidulans to irradiance and CO2-concentrationBot Acta106480487Google Scholar
  53. Murakami, A, Fujita, Y 1991Regulation of photosystem stoichiometry in the photosynthetic system of the cyanophyte Synechocystis PCC 6714 in response to light intensityPlant Cell Physiol32223230Google Scholar
  54. Murakami, A, Kim, S-J, Fujita, Y 1997Changes in photosystem stoichiometry in response to environmental conditions for cell growth observed with the cyanophyte Synechocystis PCC 6714Plant Cell Physiol38392397PubMedGoogle Scholar
  55. Muramatsu, M, Hihara, Y 2003Transcriptional regulation of genes encoding subunits of Photosystem I during acclimation to high-light conditions in Synechocystis sp. PCC 6803Planta216446453PubMedGoogle Scholar
  56. Myers, J, Graham, JR, Wang, RT 1980Light harvesting in Anacystis nidulans studied in pigment mutantsPlant Physiol6611441149Google Scholar
  57. Ogawa, T, Kaplan, A 2003Inorganic carbon acquisition systems in cyanobacteriaPhotosynth Res77105115CrossRefGoogle Scholar
  58. Öquist, G, Chow, W, Anderson, J 1992Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of Photosystem IIPlanta186450460Google Scholar
  59. Ort, D, Baker, N 2002A photoprotective role for O2 as an alternative electron sink in photosynthesis?Curr Opin Plant Biol5193198CrossRefPubMedGoogle Scholar
  60. Pfannschmidt, T 2003Chloroplast redox signals: how photosynthesis controls its own genesTrends Plant Sci83341CrossRefPubMedGoogle Scholar
  61. Raven, JA 1997Putting the C in phycologyEur J Phycol32319333CrossRefGoogle Scholar
  62. Rippka, R, Deruelles, J, Waterbury, JB, Herdman, M, Stanier, RY 1979Generic assignments, strain histories and properties of pure cultures of cyano-bacteriaJ Gen Microbiol11161Google Scholar
  63. Rodríguez-Buey, M, Orús, M 2001The response of Synechococcus PCC7942 (Cyanophyta) to changes in CO2 supply in relation to the acclimation of the CO2-concentrating mechanism. I: physiological studyJ Plant Physiol158325334CrossRefGoogle Scholar
  64. Sauer, J, Schreiber, U, Schmid, R, Volker, U, Forchhammer, K 2001Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survivalPlant Physiol126233243CrossRefPubMedGoogle Scholar
  65. Shibata, M, Ohkawa, H, Katoh, H, Shimoyama, M, Ogawa, T 2002Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803Funct Plant Biol29123129CrossRefGoogle Scholar
  66. Sippola, K, Aro, EM 2000Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942Photochem Photobiol71706714CrossRefPubMedGoogle Scholar
  67. Smith, SA, Tabita, FR 2003Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenaseJ Mol Biol331557569CrossRefPubMedGoogle Scholar
  68. Strzepek, RF, Harrison, PJ 2004Photosynthetic architecture differs in coastal and oceanic diatomsNature431689692CrossRefPubMedGoogle Scholar
  69. Sukenik, A, Bennett, J, Falkowski, P 1987Light-saturated photosynthesis limitation by electron transport of carbon fixation?Biochim Biophys Acta891205215Google Scholar
  70. Takahashi, Y, Yamaguchi, O, Omata, T 2004Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditionsMolec Microbiol52837845CrossRefGoogle Scholar
  71. Tchernov, D, Helman, Y, Keren, N, Luz, B, Ohad, I, Reinhold, L, Ogawa, T, Kaplan, A 2001Passive entry of CO2 and its energy-dependent intracellular conversion to HCO 3 in cyanobacteria are driven by a Photosystem I-generated Delta μH+J Biol Chem2762345023455PubMedGoogle Scholar
  72. Tu, CJ, Shrager, J, Burnap, RL, Postier, BL, Grossman, AR 2004Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp. strain PCC6803J Bacteriol18638893902CrossRefPubMedGoogle Scholar
  73. Tyystjarvi, T, Herranen, M, Aro, EM 2001Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 proteinMol Microbiol40476484CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Tyler D.B. MacKenzie
    • 1
  • Jeanette M. Johnson
    • 2
  • Douglas A. Campbell
    • 2
    Email author
  1. 1.Department of BiologyUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Biology and Coastal Wetlands InstituteMount Allison UniversityCanada

Personalised recommendations