Photosynthesis Research

, Volume 85, Issue 3, pp 307–317 | Cite as

Long-Term Temperature Acclimation of Photosynthesis in Steady-State Cultures of the Polar Diatom Fragilariopsis cylindrus

Regular paper

Abstract

Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.

Keywords

acclimation diatom electron transport Fragilariopsis cylindrus low temperature macroarray polar PSII 

Abbreviations

α

relative light utilization efficiency (ΔP/ΔE)

A, B, CCOMP

amplitudes of fluorescence decay rate constants (K )

Chl

chlorophyll

E

irradiance (μmol photons m−2 s−1)

EK

irradiance at the onset of light saturated photosynthesis

EST

expressed sequence tag

ETR

relative electron transport rate [(FV′/FM′) • PFD]

F0

minimal Chl fluorescence in the dark

FM

maximal Chl fluorescence in the dark

FM′

maximal Chl fluorescence during illumination

Ft

minimal Chl fluorescence during illumination

FV

variable Chl fluorescence in the dark: (FMF0)

FV′

variable Chl fluorescence during illumination (FM′Ft)

FV/FM

maximum potential quantum yield of PSII

FV′/FM’

effective quantum yield of PSII

KA, B, C

rate constant for fluorescence decay

KOPEN

fraction of oxidized PSII RCs

JCON

connectivity between PSII RCs

NPQ

non photochemical quenching [(FMFM’)/FM′]

P

photosynthesis (relative ETR)

PAR

photosynthetically active radiation

PFD

photon flux density (μmol photons m−2 s−1)

PMAX

maximum photosynthetic rate (relative units)

PSII, I

Photosystem II, I

PQ

plastoquinone pool

PUFA

polyunsaturated fatty acid

P vs. E

photosynthesis versus irradiance

QA, B

plastoquinone A, B

RC

reaction centre

Rubisco

ribulose-1,5-bisphosphate carboxylase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, Z, Clarke, AK 2002Cutting edge of chloroplast proteolysisTrends Plant Sci7451456CrossRefPubMedGoogle Scholar
  2. Allen, DJ, Ort, DR 2001Impacts of chilling temperatures on warm-climate plantsTrends Plant Sci63642CrossRefPubMedGoogle Scholar
  3. Büchel, C, Wilhelm, C 1993In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectivesPhotochem Photobiol58137148Google Scholar
  4. Boczar, BA, Palmisano, AC 1990Photosynthetic pigments and pigment-proteins in natural populations of Antarctic sea ice diatomsPhycologia29470477Google Scholar
  5. Boyd, PW 2002Environmental factors controlling phytoplankton processes in the Southern OceanJ Phycol38844861CrossRefGoogle Scholar
  6. Cota, GF 1985Photoadaptation of high Arctic ice algaeNature315219222CrossRefGoogle Scholar
  7. Davison, IR 1991Environmental effects on algal photosynthesis: temperatureJ Phycol2728CrossRefGoogle Scholar
  8. Devos, N, Ingouff, M, Loppes, R, Matagne, RF 1998RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algaeJ Phycol34655660CrossRefGoogle Scholar
  9. Eilers, PH, Peeters, JCH 1988A model for the relationship between light intensity and the rate of photosynthesis in phytoplanktonEcol Model42199215CrossRefGoogle Scholar
  10. Falkowski, PG, LaRoche, J 1991Acclimation to spectral irradiance in algaeJ Phycol27814CrossRefGoogle Scholar
  11. Fiala, M, Oriol, L 1990Light-temperature interactions on the growth of Antarctic diatomsPolar Biol10629636Google Scholar
  12. Genty, B, Briantais, JM, Baker, NR 1989The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescenceBiochim Biophys Acta9908792Google Scholar
  13. Gervais, F, Riebesell, U, Gorbunov, MY 2002Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal ZoneLimnol Oceanogr4713241335Google Scholar
  14. Gleitz M, Bartsch A, Dieckmann GS and Eicken H (1998).Composition and succession of sea ice diatom assemblages in the eastern and southern Weddell Sea, Antarctica. In: Lizotte MP and Arrigo KR (eds) pp 107–120. Washington, DC: American Geophysical UnionGoogle Scholar
  15. Grunow, A 1884Diatomeen von Franz-Josef LandDenk Acad Wien48523Google Scholar
  16. Guillard, RR, Ryther, JH 1962Studies on marine plankton diatoms. I. Cyclotella nana (Husted) and Detonula confervacea (Cleve)Can J Microbiol8229239PubMedGoogle Scholar
  17. Halldal, P 1953Phytoplankton investigations from the weather ship M in the Norwegian Sea, 1948–49Hvalradets Skr38191(Including observations during the “Armhauer Hansen” cruise, July 1949.)Google Scholar
  18. Horvárth, G, Melis, A, Hildeg, E, Droppa, M, Vigh, L 1987Role of lipids in the organisation and function of Photosystem II studied by homogeneous catalytic hydrogenation of thylakoid membranes in situBiochim Biophys Acta8916874Google Scholar
  19. Jiang, W, Fang, L, Inouye, M 1996Complete growth inhibition of Escherichia coli by ribosome trapping with truncated mRNA at low temperatureGenes Cell1965976CrossRefGoogle Scholar
  20. Kroon, BMA, Prézelin, BB 1995Temperature dependency of fluorescence decay parameters in an Antarctic isolate of the diatom Thalassiosira spAntarct J US159160Google Scholar
  21. Lavaud, J, Rousseau, B, Gorkom, HJ, Etienne, AL 2002Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutumPlant Physiol12913981406CrossRefPubMedGoogle Scholar
  22. Lizotte, MP, Sullivan, CW 1991Rates of photoadaptation in sea ice diatoms from McMurdo Sound, AntarcticaJ Phycol27367373CrossRefGoogle Scholar
  23. Mardigan, MT, Martinko, JM, Parker, J 1997Brock – Biology of Microorganisms8Prentice Hall International IncNew JerseyGoogle Scholar
  24. Maxwell, DP, Falk, S, Trick, CG, Huner, NPA 1994Growth at low temperature mimics high-light acclimation in Chlorella vulgarisPlant Physiol105535543PubMedGoogle Scholar
  25. Maxwell, K, Johnson, NJ 2000Chlorophyll Fluorescence – a Practical GuideJ Exp Bot51659668PubMedGoogle Scholar
  26. Mock, T, Kroon, BMA 2002Photosynthetic energy conversion under extreme conditions – I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatomsPhytochem614151CrossRefGoogle Scholar
  27. Mock, T, Valentin, K 2004Photosynthesis and cold acclimation: molecular evidence from a polar diatomJ Phycol40732741CrossRefGoogle Scholar
  28. Morgan-Kiss, RM, Ivanov, AG, Williams, J, Kahn, M, Huner, NPA 2002aDifferential thermal effects on the energy distribution between Photosystem II and Photosystem I in thylakoid membranes of a psychrophilic and a mesophilic algaBiochim Biophys Acta1561251265Google Scholar
  29. Morgan-Kiss, RM, Ivanov, AG, Huner, NPA 2002bThe Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitionsPlanta214435445CrossRefGoogle Scholar
  30. Neori, A, Holm-Hansen,  1982Effect of temperature on rate of photosynthesis in Antarctic phytoplanktonPolar Biol13338CrossRefGoogle Scholar
  31. Oeltjen, A, Krumbein, WE, Riehl, E 2002Investigations on transcript size, steady state mRNA concentrations and diurnal expression of genes encoding fucoxanthin chlorophyll a,c light harvesting polypeptides in the centric diatom Cyclotella crypticaPlant Biol4250257CrossRefGoogle Scholar
  32. Pfannschmidt, T, Nilsson, A, Allen, JF 1999Photosynthetic control of chloroplast gene expressionNature397625628CrossRefGoogle Scholar
  33. Tilzer, MM, Bodungen, B, Smetacek, V 1985

    Light-dependence of phytoplankton photosynthesis in the Antarctic Ocean: implications for regulating productivity

    Siegfried, WRCondy, PRLaws, RM eds.  Springer VerlagBerlin6069
    Google Scholar
  34. Tilzer, MM, Elbrächter, M, Gieske, WW, Beese, B 1986Light-temperature interactions in the control of photosynthesis in Antarctic phytoplanktonPolar Biol5105111CrossRefGoogle Scholar
  35. Tilzer, MM, Dubinsky, Z 1987Effects of temperature and day length on the mass balance of Antarctic phytoplanktonPolar Biol73542CrossRefGoogle Scholar
  36. Trtilek, M, Kramer, DM, Koblizek, M, Nedbal, L 1997Dual-modulation LED kinetik fluorometerJ Lumin72597599CrossRefGoogle Scholar
  37. Quillfeld, CH 1997Distribution of diatoms in the Northeast Water Polynya, GreenlandJ Mar Syst10211240CrossRefGoogle Scholar
  38. Wright, SW, Jeffrey, SW, Mantoura, RFC, Llewellyn, LA, Bjørnland, T, Repefa, D, Welschmeyer, NA 1991Improved HPLC method for the analysis of chlorophylls and caratenoids from marine phytoplanktonMar Ecol Prog Ser77183196Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine Research BremerhavenGermany
  2. 2.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations