Photosynthesis Research

, Volume 86, Issue 1–2, pp 81–100

On the Role of Basic Residues in Adapting the Reaction Centre–LH1 Complex for Growth at Elevated Temperatures in Purple Bacteria

  • Ashley J. Watson
  • Arwel V. Hughes
  • Paul K. Fyfe
  • Marion C. Wakeham
  • Kate Holden-Dye
  • Peter Heathcote
  • Michael R. Jones
Regular Paper


The purple photosynthetic bacterium Thermochromatium tepidum is a moderate thermophile, with a growth optimum of 48–50 °C. The X-ray crystal structure of the reaction centre from this organism has been determined, and compared with that from mesophilic bacteria such as Blastochloris viridis and Rhodobacter sphaeroides (Nogi T et al. (2000) Proc Natl Acad Sci USA 97: 13561–13566). Structural features that could contribute to the enhanced thermal stability of the Thermochromatium tepidum reaction centre were discussed, including three arginine residues exposed at the periplasmic side of the membrane that are not present in reaction centres from mesophilic organisms, and potentially could increase the affinity of the complex for the surrounding membrane. In the present report these arginine residues, plus a histidine identified from an extensive sequence alignment, were engineered into structurally homologous positions in the Rhodobacter sphaeroides reaction centre, and the effect on the thermal stability of the Rhodobacter sphaeroides complex was examined. We find that these residues do not enhance the thermal stability of the reaction centre, as assessed by absorbance spectroscopy of the bacteriochlorin cofactors in membrane-bound reaction centres. Possible roles of these residues in the Thermochromatium tepidum reaction centre are discussed, and it is proposed that they facilitate stronger binding of the reaction centre to the encircling LH1 antenna complex, through ionic interactions with acidic residues at the C-terminal end of the LH1 α-polypeptide. Such an interaction could enhance the stability of the so-called ‘RC–LH1 core’ complex that is formed between the reaction centre and the LH1 antenna, and which represents the minimal functional photosynthetic unit in all known purple photosynthetic bacteria. Stronger bonding interactions between the two complexes could also contribute to an increase in the rigidity of the photosynthetic membrane in Thermochromatium tepidum, in accord with the general finding that the cytoplasmic membrane from thermophilic eubacteria is less fluid than its counterpart in mesophilic bacteria.


basic residues core complex LH1 antenna mutagenesis reaction centre thermal stability 

















lauryldimethylamine oxide




phosphatidyl ethanolamine


phosphatidyl glycerol






ribulose-1,5-bisphosphate carboxylase/oxygenase




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, JP, Feher, G, Yeates, TO, Komiya, H, Rees, DC 1987Structure of the reaction center from Rhodobacter sphaeroides R-26 – the cofactorsProc Natl Acad Sci USA8457305734PubMedGoogle Scholar
  2. Bahatyrova, S, Frese, RN, Siebert, CA, Olsen, JD, Werf, KO, Grondelle, R, Niederman, RA, Bullough, PA, Otto, C, Hunter, CN 2004aThe native architecture of a photosynthetic membraneNature43010581062CrossRefGoogle Scholar
  3. Bahatyrova, S, Frese, RN, van der Werf, KO, Otto, C, Hunter, CN, Olsen, JD 2004bFlexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy – functional significance for bacterial photosynthesisJ Biol Chem2792132721333CrossRefGoogle Scholar
  4. Bairoch, A, Apweiler, R 2000The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000Nucl Acids Res284548CrossRefPubMedGoogle Scholar
  5. Benson, DA, Karsch-Mizrachi, I, Lipman, DJ, Ostell, J, Wheeler, DL 2003GenBankNucl Acids Res312327CrossRefPubMedGoogle Scholar
  6. Bertero, MG, Rothery, RA, Palak, M, Hou, C, Lim, D, Blasco, F, Weiner, JH, Strynadka, NC 2003Insights into the respiratory electron transfer pathway from the structure of nitrate reductase ANat Struct Biol10681687CrossRefPubMedGoogle Scholar
  7. Bowie, JU 2001Stabilizing membrane proteinsCurr Opin Struct Biol11397402CrossRefPubMedGoogle Scholar
  8. Camara-Artigas, A, Brune, D, Allen, JP 2002Interactions between lipids and bacterial reaction centres determined by protein crystallographyProc Natl Acad Sci USA991105511060PubMedGoogle Scholar
  9. Chang, CH, El Kabbani, O, Tiede, D, Norris, J, Schiffer, M 1991Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroidesBiochemistry3053525360PubMedGoogle Scholar
  10. Collaborative Computational Project, Number 4 (1994) Acta Crystallogr D 50, pp 760–763.Google Scholar
  11. Conroy, MJ, Westerhuis, WHJ, Parkes-Loach, PS, Loach, PA, Hunter, CN, Williamson, MP 2000The solution structure of Rhodobacter sphaeroides LH1 beta reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complexJ Mol Biol2988394CrossRefPubMedGoogle Scholar
  12. Deisenhofer, J, Epp, O, Miki, K, Huber, R, Michel, H 1985Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Angstrom resolutionNature318618624CrossRefGoogle Scholar
  13. Deisenhofer, J, Epp, O, Sinning, I, Michel, H 1995Crystallographic refinement at 2,3-angstrom resolution and refined model of the photosynthetic reaction-center from Rhodopseudomonas viridisJ Mol Biol246429457PubMedGoogle Scholar
  14. Demirjian, DC, Morís-Varas, F, Cassidy, CS 2001Enzymes from extremophilesCurr Opin Chem Biol5144151CrossRefPubMedGoogle Scholar
  15. Engelhardt, H, Engel, A, Baumeister, W 1986Stoichiometric model of the photosynthetic unit of Ectothiorhodospira halochlorisProc Natl Acad Sci USA8389728976Google Scholar
  16. Ermler, U, Fritzsch, G, Buchanan, SK, Michel, H 1994aStructure of the photosynthetic reaction-center from Rhodobacter sphaeroides at 2.65-angstrom resolution – cofactors and protein-cofactor interactionsStructure2925936CrossRefGoogle Scholar
  17. Ermler, U, Michel, H, Schiffer, M 1994bStructure and function of the photosynthetic reaction center from Rhodobacter sphaeroidesJ Bioenerg Biomemb26515CrossRefGoogle Scholar
  18. Fathir, I, Ashikaga, M, Tanaka, K, Katano, T, Nirasawa, T, Kobayashi, M, Wang, ZY, Nozawa, T 1998Biochemical and spectral characterization of the core light harvesting complex 1 (LH1) from the thermophilic purple sulfur bacterium Chromatium tepidumPhotosynth Res58193202CrossRefGoogle Scholar
  19. Fathir, I, Mori, T, Nogi, T, Kobayashi, M, Miki, K, Nozawa, T 2001Structure of the H subunit of the photosynthetic reaction center from the thermophilic purple sulfur bacterium, Thermochromatium tepidum – implications for the specific binding of the lipid molecule to the membrane protein complexEur J Biochem26826522657CrossRefPubMedGoogle Scholar
  20. Feick, R, Shiozawa, JA, Erltmaier, A 1995

    Biochemical and spectroscopic properties of the reaction center from the green filamentous bacterium Chloroflexus aurantiacus

    Blankenship, REMadigan, MTBauer, C eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands699708
    Google Scholar
  21. Fotiadis, D, Qian, P, Philippsen, A, Bullough, PA, Engel, A, Hunter, CN 2004Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopyJ Biol Chem27920632068CrossRefPubMedGoogle Scholar
  22. Fyfe, PK, McAuley, KE, Roszak, AW, Isaacs, NW, Cogdell, RJ, Jones, MR 2001Probing the interface between membrane proteins and membrane lipids by X-ray crystallographyTrends Biochem Sci26106112CrossRefPubMedGoogle Scholar
  23. Garcia, D, Parot, P, Vermeglio, A, Madigan, MT 1986The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium-tepidumBiochim Biophys Acta850390395Google Scholar
  24. Harrenga, A, Michel, H 1999The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reductionJ Biol Chem2743329633299CrossRefPubMedGoogle Scholar
  25. Heda, GD, Madigan, MT 1988Thermal-properties and oxygenase activity of ribulose-1,5-bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium-tepidumFEMS Micro Letts514550CrossRefGoogle Scholar
  26. Heda, GD, Madigan, MT 1989Purification and characterization of the thermostable ribulose-1,5-bisphosphate carboxylase oxygenase from the thermophilic purple bacterium Chromatium-tepidumEur J Biochem184313319CrossRefPubMedGoogle Scholar
  27. Heller, BA, Holten, D, Kirmaier, C 1995Control of electron-transfer between the L-side and M-side of photosynthetic reaction centersScience269940945PubMedGoogle Scholar
  28. Hu, X, Schulten, K 1998Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroidesBiophysical J75683694Google Scholar
  29. Hu, X, Damjanović, A, Ritz, T, Schulten, K 1998Architecture and mechanism of the light-harvesting apparatus of purple bacteriaProc Natl Acad Sci USA9559355941CrossRefPubMedGoogle Scholar
  30. Ikeda-Yamasaki, I, Odahara, T, Mitsuoka, K, Fujiyoshi, Y, Murata, K 1998Projection map of the reaction center-light harvesting 1 complex from Rhodopseudomonas viridis at 10 angstrom resolutionFEBS Letts425505508CrossRefGoogle Scholar
  31. Imhoff, JF, Bias-Imhoff, U 1995

    Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria

    Blankenship, REMadigan, MTBauer, C eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands179205
    Google Scholar
  32. Imhoff, JF, Kushner, DJ, Kushwaha, SC, Kates, M 1982Polar lipids in phototropic bacteria of the Rhodospirillaceae and Chromatiaceae familiesJ Bact15011921201PubMedGoogle Scholar
  33. Imhoff, JF, Suling, J, Petri, R 1998Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and ThermochromatiumInt J Sys Bact4811291143Google Scholar
  34. Jaenicke, R, Bohm, G 1998The stability of proteins in extreme environmentsCurr Opin Struct Biol8738748CrossRefPubMedGoogle Scholar
  35. Jamieson, SJ, Wang, PY, Qian, P, Kirkland, JY, Conroy, MJ, Hunter, CN, Bullough, PA 2002Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 angstrom resolutionEMBO J2139273935CrossRefPubMedGoogle Scholar
  36. Jones, MR, Fowler, GJS, Gibson, LCD, Grief, GG, Olsen, JD, Crielaard, W, Hunter, CN 1992aConstruction of mutants of Rhodobacter sphaeroides lacking one or more pigment–protein complexes and complementation with reaction-centre, LH1, and LH2 genesMol Microbiol611731184Google Scholar
  37. Jones, MR, Visschers, RW, Grondelle, R, Hunter, CN 1992bConstruction and characterisation of a mutant of Rhodobacter sphaeroides with the reaction centre as the sole pigment–protein complexBiochemistry3144584465CrossRefGoogle Scholar
  38. Jones, MR, Heer-Dawson, M, Mattioli, TA, Hunter, CN, Robert, B 1994Site-specific mutagenesis of the reaction centre from Rhodobacter sphaeroides studied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donorFEBS Letts3391824CrossRefGoogle Scholar
  39. Jordan, P, Fromme, P, Witt, HT, Klukas, O, Saenger, W, Krauss, N 2001Three-dimensional structure of cyanobacterial photosystem I at 2.5Å resolutionNature411909917PubMedGoogle Scholar
  40. Jormakka, M, Tornroth, S, Byrne, B, Iwata, S 2002Molecular basis of proton motive force generation: structure of formate dehydrogenase-NScience29518631868CrossRefPubMedGoogle Scholar
  41. Jungas, C, Ranck, JL, Rigaud, JL, Joliot, P, Verméglio, A 1999Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroidesEMBO J18534542PubMedGoogle Scholar
  42. Karrasch, S, Bullough, PA, Ghosh, R 1995The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunitsEMBO J14631638PubMedGoogle Scholar
  43. Katona, G, Andreasson, U, Landau, EM, Andreasson, LE, Neutze, R 2003Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35Å resolutionJ Mol Biol331681692PubMedGoogle Scholar
  44. Kirmaier, C, Gaul, D, Debey, R, Holten, D, Schenck, CC 1991Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytinScience251922927PubMedGoogle Scholar
  45. Kurisu, G, Zhang, H, Smith, JL, Cramer, WA 2003Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavityScience30210091014PubMedGoogle Scholar
  46. Lange, C, Nett, JH, Trumpower, BL, Hunte, C 2001Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structureEMBO J2065916600CrossRefPubMedGoogle Scholar
  47. Lee, AG 2003Lipid–protein interactions in biological membranes: a structural perspectiveBiochim Biophys Acta1612140PubMedGoogle Scholar
  48. Lee, B, Vasmatzis, G 1997Stabilization of protein structuresCurr Opin Biotechnol8423428CrossRefPubMedGoogle Scholar
  49. Liu, Z, Yan, H, Wang, K, Kuang, T, Zhang, J, Gui, L, An, X, Chang, W 2004Crystal structure of spinach major light-harvesting␣complex at 2.72 Å resolutionNature428287292PubMedGoogle Scholar
  50. Luecke, H, Schobert, B, Richter, H-T, Cartailler, J-P, Lanyi, JK 1999Structure of bacteriorhodopsin at 1.55 angstrom resolutionJ Mol Biol291899911CrossRefPubMedGoogle Scholar
  51. Madigan, MT 1984A novel photosynthetic purple bacterium isolated from a Yellowstone hot springScience225314316Google Scholar
  52. Madigan, MT 1986Chromatium-tepidum sp-nov, a thermophilic photosynthetic bacterium of the family ChromatiaceaeInt J Syst Bact36222227Google Scholar
  53. McAuley-Hecht, KE, Fyfe, PK, Ridge, JP, Prince, SM, Hunter, CN, Isaacs, NW, Cogdell, RJ, Jones, MR 1998Structural studies of wild type and mutant reaction centres from an antenna-deficient strain of Rhodobacter sphaeroides: monitoring the optical properties of the complex from cell to crystalBiochemistry3747404750PubMedGoogle Scholar
  54. McAuley, KE, Fyfe, PK, Ridge, JP, Isaacs, NW, Cogdell, RJ, Jones, MR 1999Structural details of an interaction between cardiolipin and an integral membrane proteinProc Natl Acad Sci USA961470614711PubMedGoogle Scholar
  55. McAuley, KE, Fyfe, PK, Ridge, JP, Cogdell, RJ, Isaacs, NW, Jones, MR 2000Ubiquinone binding, ubiquinone exclusion, and detailed cofactor conformation in a mutant bacterial reaction centerBiochemistry391503215043CrossRefPubMedGoogle Scholar
  56. McElhaney, RN 1989The influence of membrane lipid-composition and physical-properties of membrane-structure and function in Acholeplasma-laidlawiiCrit Rev Microbiol17132PubMedGoogle Scholar
  57. McGlynn, P, Hunter, CN, Jones, MR 1994The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting systemFEBS Letts349349353CrossRefGoogle Scholar
  58. Nagashima, KVP, Matsuura, K, Wakao, N, Hiraishi, A, Shimada, K 1997Nucleotide sequences of genes coding for photosynthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteriaPlant Cell Physiol3812491258PubMedGoogle Scholar
  59. Nogi, T, Fathir, I, Kobayashi, M, Nozawa, T, Miki, K 2000Crystal structures of photosynthetic reaction centre and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transferProc Natl Acad Sci USA971356113566PubMedGoogle Scholar
  60. Nozawa, T, Madigan, MT 1991Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidumJ Biochem110588594PubMedGoogle Scholar
  61. Nozawa, T, Fukada, T, Hatano, M, Madigan, MT 1986Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed by absorption, circular-dichroism and emission-spectraBiochim Biophys Acta852191197Google Scholar
  62. Nozawa, T, Trost, JT, Fukada, T, Hatano, M, McManus, JD, Blankenship, RE 1987Properties of the reaction center of the thermophilic purple photosynthetic bacterium Chromatium tepidumBiochim Biophys Acta894468476PubMedGoogle Scholar
  63. Olsen, JD, Sockalingum, GD, Robert, B, Hunter, CN 1994Modification of a hydrogen-bond to a bacteriochlorophyll-a molecule in the light-harvesting 1-antenna of Rhodobacter-sphaeroidesProc Natl Acad Sci USA9171247128PubMedGoogle Scholar
  64. Palsdottir, H, Lojero, CG, Trumpower, BL, Hunte, C 2003Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor boundJ Biol Chem2783130331311PubMedGoogle Scholar
  65. Papiz, MZ, Prince, SM, Hawthornthwaite-Lawless, AM, McDermott, G, Freer, AA, Isaacs, NW, Cogdell, RJ 1996A model for the photosynthetic apparatus of purple bacteriaTrends Plant Sci1198206CrossRefGoogle Scholar
  66. Papiz, MZ, Prince, SM, Howard, T, Cogdell, RJ, Isaacs, NW 2003The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motionsJ Mol Biol32615231538CrossRefPubMedGoogle Scholar
  67. Pebay-Peyroula, E, Dahout-Gonzalez, C, Kahn, R, Trezeguet, V, Lauquin, GJ, Brandolin, G 2003Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractylosideNature4263944CrossRefPubMedGoogle Scholar
  68. Pierson, BK, Thornber, JP, Seftor, REB 1983Partial purification, subunit structure and thermal stability of the photochemical reaction center of the thermophilic green bacterium Chloroflexus aurantiacusBiochim Biophys Acta723322326Google Scholar
  69. Qian, P, Addlesee, HA, Ruban, AV, Wang, PY, Bullough, PA, Hunter, CN 2003A reaction center-light-harvesting 1 complex (RC–LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigmentsJ Biol Chem2782367823685CrossRefPubMedGoogle Scholar
  70. Ridge JP (1998) PhD thesis, University of SheffieldGoogle Scholar
  71. Ridge, JP, Brederode, ME, Goodwin, MG, Grondelle, R, Jones, MR 1999Mutations that modify or exclude binding of the QA ubiquinone and carotenoid in the reaction center from Rhodobacter sphaeroidesPhotosynth Res59926CrossRefGoogle Scholar
  72. Roszak, AW, Howard, TD, Southall, J, Gardiner, AT, Law, CJ, Isaacs, NW, Cogdell, RJ 2003Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustrisScience30219691972PubMedGoogle Scholar
  73. Russell, NJ 1984Mechanisms of thermal adaptation in bacteria – blueprints for survivalTrends Biochem Sci9108112CrossRefGoogle Scholar
  74. Russell, NJ, Fukunaga, N 1990A comparison of thermal adaptation of membrane-lipids in psychrophilic and thermophilic bacteriaFEMS Microbiol Rev75171182CrossRefGoogle Scholar
  75. Sanchez-Ruiz, JM, Makhatadze, GI 2001To charge or not to charge?Trends Biotechnol19132135CrossRefPubMedGoogle Scholar
  76. Scheuring, S, Seguin, J, Marco, S, Levy, D, Robert, B, Rigaud, JL 2003Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFMProc Natl Acad Sci USA10016901693PubMedGoogle Scholar
  77. Scheuring, S, Sturgis, JN, Prima, V, Bernadac, A, Levy, D, Rigaud, JL 2004aWatching the photosynthetic apparatus in native membranesProc Natl Acad Sci USA1011129311297CrossRefGoogle Scholar
  78. Scheuring, S, Francia, F, Busselez, J, Melandri, BA, Rigaud, J-L, Lévy, D 2004bStructural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroidesJ Biol Chem27936203626CrossRefGoogle Scholar
  79. Scheuring, S, Rigaud, J-L, Sturgis, JN 2004cVariable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricumEMBO J2341274133CrossRefGoogle Scholar
  80. Siebert, CA, Qian, P, Fotiadis, D, Engel, A, Hunter, CN, Bullough, PA 2004Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufXEMBO J23690700PubMedGoogle Scholar
  81. Sinensky, M 1974Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coliProc Natl Acad Sci USA71522525PubMedGoogle Scholar
  82. Stahlberg, H, Dubochet, J, Vogel, H, Ghosh, R 1998Are the light-harvesting I complexes from Rhodospirillum rubrum arranged around the reaction centre in a square geometry?J Mol Biol282819831CrossRefPubMedGoogle Scholar
  83. Steiner, S, Conti, SF, Lester, RL 1969Separation and identification of the polar lipids of Chromatium Strain DJ Bacteriol981015PubMedGoogle Scholar
  84. Stroebel, D, Choquet, Y, Popot, JL, Picot, D 2003An atypical haem in the cytochrome b(6)f complexNature426413418CrossRefPubMedGoogle Scholar
  85. Sturgis, JN, Olsen, JD, Robert, B, Hunter, CN 1997Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroidesBiochemistry3627722778CrossRefPubMedGoogle Scholar
  86. Suutari M and Laakso S (1994) Microbial fatty-acids and thermal adaptation. Crit Rev Microbiol : 285-328Google Scholar
  87. Szilágyi, A, Závodszky, P 2000Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive surveyStructure8493504CrossRefPubMedGoogle Scholar
  88. Thompson, JD, Higgins, DG, Gibson, TJ 1994Clustal-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucl Acids Res2246734680PubMedGoogle Scholar
  89. Tolner, B, Poolman, B, Konings, WN 1997Adaptation of microorganisms and their transport systems to high temperaturesComp Biochem Physiol A118423428CrossRefGoogle Scholar
  90. Vieille, C, Zeikus, GJ 2001Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostabilityMicrobiol Mol Biol Rev65143Google Scholar
  91. Heijne, G 1992Membrane protein structure prediction: hydrophobicity analysis and the positive-inside ruleJ Mol Biol225487494CrossRefPubMedGoogle Scholar
  92. Wakeham, MC, Jones, MR, Sessions, RB, Fyfe, PK 2001Is there a conserved interaction between cardiolipin and the Type II bacterial reaction center?Biophys J8013951405PubMedGoogle Scholar
  93. Walz, T, Jamieson, SJ, Bowers, CM, Bullough, PA, Hunter, CN 1998Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 angstrom LH1 and RC–LH1 at 25 angstromJ Mol Biol282833845CrossRefPubMedGoogle Scholar
  94. Wang, ZY, Shimonaga, M, Kobayashi, M, Nozawa, T 2002N-terminal methylation of the core light-harvesting complex in purple photosynthetic bacteriaFEBS Lett519164168CrossRefPubMedGoogle Scholar
  95. Wang, Z-Y, Shimonga, M, Kobayashi, M, Nozawa, T 2003Purification and characterization of the polypeptides of core light-harvesting complexes from purple sulfur bacteriaPhotosynth Res78133141CrossRefGoogle Scholar
  96. Yankovskaya, V, Horsefield, R, Tornroth, S, Luna-Chavez, C, Miyoshi, H, Leger, C, Byrne, B, Cecchini, G, Iwata, S 2003Architecture of succinate dehydrogenase and reactive oxygen species generationScience299700704PubMedGoogle Scholar
  97. Yano, JK, Poulos, TL 2003New understandings of thermostable and peizostable enzymesCurr Opin Biotech14360365CrossRefPubMedGoogle Scholar
  98. Yeates, TO, Komiya, H, Rees, DC, Allen, JP, Feher, G 1987Structure of the reaction center from Rhodobacter-sphaeroides R-26 – membrane-protein interactionsProc Natl Acad Sci USA8464386442PubMedGoogle Scholar
  99. Zhang, Z, Huang, L, Shulmeister, VM, Chi, YI, Kim, KK, Hung, LW, Crofts, AR, Berry, EA, Kim, SH 1998Electron transfer by domain movement in cytochrome bc1Nature392677684PubMedGoogle Scholar
  100. Zhou, Y, Bowie, JU 2000Building a thermostable membrane proteinJ Biol Chem27569756979CrossRefPubMedGoogle Scholar
  101. Zuber, H, Cogdell, RJ 1995

    Structure and organiszation of purple bacterial antenna complexes

    Blankenship, REMadigan, MTBauer, C eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands315348
    Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ashley J. Watson
    • 1
  • Arwel V. Hughes
    • 1
  • Paul K. Fyfe
    • 1
    • 3
  • Marion C. Wakeham
    • 1
  • Kate Holden-Dye
    • 1
  • Peter Heathcote
    • 2
  • Michael R. Jones
    • 1
  1. 1.Department of Biochemistry, School of Medical SciencesUniversity of Bristol BristolUK
  2. 2.School of Biological Sciences, Queen MaryUniversity of LondonLondonUK
  3. 3.Division of Biological Chemistry and Molecular Microbiology, Faculty of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations