Photosynthesis Research

, Volume 85, Issue 2, pp 169–180 | Cite as

A bacteriophytochrome regulates the synthesis of LH4 complexesin Rhodopseudomonas palustris

  • Katie Evans
  • Anthony P. Fordham-Skelton
  • Hiten Mistry
  • Colin D. Reynolds
  • Anna M. Lawless
  • Miroslav Z. Papiz
Regular paper


The non-sulphur purple bacterium Rhodopseudomonas palustris contains five pucAB genes for peripheral light-harvesting complexes. Bacteria grown under high-light conditions absorb at 800 and 850 nm but in low-light the 850 nm peak is almost absent and LH2 complexes are replaced by LH4. The genome contains six bacteriophytochromes (Bph). Bphs sense light in the red/far-red through a reversible Pr to Pfr transformation that controls gene expression. Bph3 (RPA1537) controls the expression of a cluster of photosynthetic genes, however most of the peripheral light harvesting complex genes are outside of this region. The pucAB-d genes encode LH4 peptides and are near two Bphs (RPA3015, RPA3016). We have characterised three Bphs and show that Bph4 RPA3015 and Bph3 RPA1537 have different dark stable states. It is known that Bph3 is active in its red absorbing Pr form and suggests a working hypothesis that Bph4 is active in the Pfr state. We show that LH4 expression can be induced with red light at the Pr absorption maximum (708 nm) of Bph4. The property of light transmission of water maybe an important factor in understanding this adaptation. Bph4 can sense the reduction in light intensity indirectly through an increase in ratio of transmitted red/far-red light. The red right activated Bph4 regulates the synthesis of LH4 which concentrates bacteriochlorophyll a pigment absorption at 800 nm to exploit a recovery in water light transmission in this region.


bacteriophytochromes gene expression light-harvesting low-light Rhodopseudomonas palustris 


Bchl a

bacteriochlorophyll a




light-harvesting complex 1


peripheral light-harvesting complex 2


peripheral light-harvesting complex 4


far-red absorbing Bph


red absorbing Bph


reaction centre


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard, J, Sistrom, WR 1972Control of synthesis of reaction centre bacteriochlorophyll in photosynthetic bacteriaPhotochem Photobiol15209225PubMedGoogle Scholar
  2. Bauer, C, Elsen, E, E, , Swem, LR, Swem, DL, Masuda, S 2003Redox and light regulation of gene expression in photosynthetic prokaryotesPhil T Roy Soc B358147154CrossRefGoogle Scholar
  3. Bhoo, S-H, Davis, SJ, Walker, J, Karniol, B, Vierstra, RD 2001Bacteriophytochromes are photochromic histdine kinase using a biliverdin chromophoreNature414776777CrossRefPubMedGoogle Scholar
  4. Bradford, MM 1976A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedGoogle Scholar
  5. Davis, SJ, Vener, AV, Vierstra, RD 1999Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteriaScience128625172520CrossRefGoogle Scholar
  6. De Ruijter, WP, Oellerich, S, Segura, JM, Lawless, AM, Papiz, MZ, Aartsma, TJ 2004Observation of the energy level structure of the low light adapted B800 LH4 complex by single molecule spectroscopyBiophys J8734133420CrossRefPubMedGoogle Scholar
  7. Evans, MB, Hawthornthwaite, AM, Cogdell, RJ 1990Isolation and characterisation of different B800–850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6Biochim Biophys Acta10167176Google Scholar
  8. Gelfgat, VI, Kosarev, EL and Podolyak ER (1993) Programs for signal recovery from noisy data by maximum likelihood method. Computer Physics Communications, Vol. 74, No. 3, Part 1: General description, pp 335–348, Part 2: Program implementation, pp 349–357Google Scholar
  9. Giraud, E, Fardoux, J, Fourrier, N, Hannibal, L, Genty, B, Bouyer, P, Dreyfus, B, Verméglio, A 2002Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteriaNature417202205CrossRefPubMedGoogle Scholar
  10. Giraud, E, Zappa, S, Jaubert, M, Hannibal, L, Fardoux, J, Adriano, J-M, Bouyer, P, Genty, B, Pignol, D, Verméglio, A 2004aBacteriophytochrome and regulation of the synthesis of the photosynthetic apparatus in Rhodopseudomonas palustris: pitfalls of using laboratory strainsPhotochem Photobiol Sci3587591CrossRefGoogle Scholar
  11. Giraud E, Zappa S, Vuillet L, Fardoux J, Hannibal L, Berthomieu C, and Pignol D (2004b) Characterization and function of the six bacteriophytochromes of Rhodopseudomonas palustris. 13th International Congress of Photosythesis. Symposium S2B, Abstract 29, pp 47Google Scholar
  12. Gomelsky, M, Lee, H-J, Kaplan, S 1998Mutation analysis and regulation of PpsR, the Rhodobacter sphaeroides repressor of photopigment and light harvesting complex-II expressionGA, PeschekW, LoffelhardtSchmetterer, G eds. The Phototrophic ProkaryoterNew YorkKluwer Academic/Plenum Publishers131138Google Scholar
  13. Hartigan, N, Tharia, HA, Sweeney, F, Lawless, AM, Papiz, MZ 2002The 7.5 Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustrisBiophys J82963977PubMedGoogle Scholar
  14. Hawthornthwaite AM and Cogdell RJ (1991) In: Scheer H (ed) The Chlorophylls, pp 493–528, CRC Press, Boca Raton, FLGoogle Scholar
  15. Hughes, J, Lamparter, T, Mittmann, F, Hartmann, E, Gartner, W, Wilde, A, Borner, T 1997A prokaryotik phytochromeNature386663CrossRefPubMedGoogle Scholar
  16. Jaubert, M, Zappa, S, Fardoux, J, Adriano, JM, Hannibal, L, Elsen, S, Lavergne, J, Vermeglio, A, Giraud, E, Pignol, D 2004Light and redox control of photosynthesis gene expression in bradyrhizobium: dual roles of two PpsRJ Biol Chem2794440744416CrossRefPubMedGoogle Scholar
  17. Karniol, B, Vierstra, RD 2003The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological propertiesProc Natl Acad Sci USA10028072812CrossRefPubMedGoogle Scholar
  18. Kyndt, JA, Meyer, TE, Cusanovich, MA 2004Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteriaPhotochem Photobiol Sci3519530CrossRefPubMedGoogle Scholar
  19. Lamparter, T, Michael, N, Mittmann, F, Esteban, B 2002Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment siteProc Natl Acad Sci USA991162811633CrossRefPubMedGoogle Scholar
  20. Lamparter, T, Michael, N, Caspani, O, Miyata, T, Shirai, K, Inomata, K 2003Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chainJ Biol Chem2783378633792CrossRefPubMedGoogle Scholar
  21. Larimer, FW, Chain, P, Hauser, L, Lamerdin, J, Malfatti, S, Do, L, Land, ML, Pelletier, DA, DA, , Beatty, JT, Lang, AS, Tabita F, R, Gibson, JL, Hanson, TE, Bobst, C, Torres y Torres, JL, Peres, C, Harrison, FH, Gibson, J, Harwood, C 2004Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustrisNat Biotech225561CrossRefGoogle Scholar
  22. Leblanc, C, Falciatore, A, Watanabe, M, Bowler, C 1999Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatomsPlant Mol Biol4010311044CrossRefPubMedGoogle Scholar
  23. McDermott, G, Prince, SM, Freer, AA, Hawthornthwaite-Lawless, AM, Papiz, MZ, Cogdell, RJ, Isaacs, NW 1995Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteriaNature374517521CrossRefGoogle Scholar
  24. McLuskey, K, Prince, SM, Cogdell, RJ, Isaacs, NW 2001The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050Biochemistry4087838789PubMedGoogle Scholar
  25. Papiz, MZ, Prince, SM, Howard, T, Cogdell, RJ, Isaacs, NW 2003The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motionsJ Mol Biol32615231538CrossRefPubMedGoogle Scholar
  26. Park, C-M, Shim, J-Y, Yang, S-S, Kang, J-G, Kim, J-I, Luka, Z, Song, P-S 2000Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1Biochemistry3963496356CrossRefPubMedGoogle Scholar
  27. Ragni, M, D’Alcala, MR 2004Light as an information carrier underwaterJ Plankton Res26433443CrossRefGoogle Scholar
  28. Smith, H, Whitelam, GC 1997The shade avoidance syndrome: multiple responses mediated by multiple phytochromesPlant Cell Environ20840844CrossRefGoogle Scholar
  29. Swem, DL, Bauer, CE 2002Coordination of ubiquinol oxidase and cytochrome cbb3 oxidase expression by multiple regulators in Rhodobacter capsulatusJ Bacteriol18428152820CrossRefPubMedGoogle Scholar
  30. Tadros, MH, Waterkamp, K 1989Multiple copies of the coding regions for the light-harvesting B800–850 alpha- and beta-polypeptides are present in the Rhodopseudomonas palustris genomeEMBO J513031308Google Scholar
  31. Taylor, RL, Zhulin, IB 1999PAS domains: internal sensors of oxygen redox potential and lightMicrobiol Mol Biol Rev63479506PubMedGoogle Scholar
  32. Tharia, HA, Nightingale, TD, Papiz, MZ, Lawless, AM 1999Characterisation of hydrophobic peptides by RP-HPLC from different spectral forms of LH2 isolated from Rhodopseudomonas palustrisPhotosynth Res61157157CrossRefGoogle Scholar
  33. Wu, S-H, Lagarias, JC 1997The phytochrome photoreceptor in the green alga Mesotaenium caldariorum: implication for a conserved mechanism of phytochrome actionPlant Cell Environ20691699CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Katie Evans
    • 1
    • 2
  • Anthony P. Fordham-Skelton
    • 1
  • Hiten Mistry
    • 1
  • Colin D. Reynolds
    • 2
  • Anna M. Lawless
    • 1
  • Miroslav Z. Papiz
    • 1
  1. 1.CCLRC Daresbury LaboratoryDaresbury, WarringtonUK
  2. 2.School of Biomolecular SciencesJohn Moores UniversityLiverpoolUK

Personalised recommendations