Photosynthesis Research

, Volume 86, Issue 1–2, pp 101–111 | Cite as

Isolation and Characterization of Carotenosomes from a Bacteriochlorophyll c-less Mutant ofChlorobium tepidum

  • Niels-Ulrik Frigaard
  • Hui Li
  • Peter Martinsson
  • Somes Kumar Das
  • Harry A. Frank
  • Thijs J. Aartsma
  • Donald A. Bryant
Regular Paper

Abstract

Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blankenship, RE, Matsuura, K 2003

    Antenna complexes from green photosynthetic bacteria

    Green, BRWW, Parson eds. Light-Harvesting Antennas in PhotosynthesisKluwer Academic PublishersDordrecht, The Netherlands195217
    Google Scholar
  2. Blankenship, RE, Olson, JM, Miller, M 1995

    Antenna complexes from green photosynthetic bacteria

    Blankenship, REMadigan, MTBauer, CE eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands399435
    Google Scholar
  3. Bryant, DA, Vassilieva, EV, Frigaard, N-U, Li, H 2002Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll aBiochemistry411440314411CrossRefPubMedGoogle Scholar
  4. Chung, S, Bryant, DA 1996aCharacterization of csmB genes from Chlorobium vibrioforme 8327D and Chlorobium tepidumand overproduction of the Chlorobium tepidum CsmB protein in Escherichia coliArch Microbiol166234244CrossRefGoogle Scholar
  5. Chung, S, Bryant, DA 1996bCharacterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD and CsmE proteins are components of the chlorosome envelopePhotosynth Res504159CrossRefGoogle Scholar
  6. Chung, S, Frank, G, Zuber, H, Bryant, DA 1994Genes encoding two chlorosome proteins from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidumPhotosynth Res41261275CrossRefGoogle Scholar
  7. Chung, S, Shen, G, Ormerod, J, Bryant, DA 1998Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: the chlorosome protein CsmA is required for viability but CsmC is dispensableFEMS Microbiol Lett164353361CrossRefPubMedGoogle Scholar
  8. Feick, RG, Fuller, RC 1984Topography of the photosynthetic apparatus of Chloroflexus aurantiacusBiochemistry2336933700CrossRefGoogle Scholar
  9. Foidl, M, Golecki, JR, Oelze, J 1998Chlorosome development in Chloroflexus aurantiacusPhotosynth Res55109114CrossRefGoogle Scholar
  10. Frank, HA, Cogdell, RJ 1996Carotenoids in photosynthesisPhotochem Photobiol63257264PubMedGoogle Scholar
  11. Frigaard, N-U, Bryant, DA 2001Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformationAppl Environ Microbiol6725382544CrossRefPubMedGoogle Scholar
  12. Frigaard, N-U, Bryant, DA 2004Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteriaArch Microbiol182265276CrossRefPubMedGoogle Scholar
  13. Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J and Bryant DA (2001) The remarkable chlorosome. In: PS2001 Proceedings of the 12th International Congress on Photosynthesis, article S1-003. CSIRO Publishing, MelbourneGoogle Scholar
  14. Frigaard, N-U, Voigt, GD, Bryant, DA 2002Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthaseJ Bacteriol18433683376CrossRefPubMedGoogle Scholar
  15. Frigaard, N-U, Gomez Maqueo Chew, A, Li, H, Maresca, JA, Bryant, DA 2003Chlorobium tepidum: insights into the structure, physiology and metabolism of a green sulfur bacterium derived from the complete genome sequencePhotosynth Res7893117CrossRefGoogle Scholar
  16. Frigaard, N-U, Li, H, Milks, KJ, Bryant, DA 2004aNine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomesJ Bacteriol186646653CrossRefGoogle Scholar
  17. Frigaard, N-U, Maresca, JA, Yunker, CE, Jones, AD, Bryant, DA 2004bGenetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidumJ Bacteriol18652105220CrossRefGoogle Scholar
  18. Garrity, GM, Holt, JG 2001a

    Phylum BXI. Chlorobi phy. nov

    Boone, DRCastenholz, RW eds. Bergey’s Manual of Systematic Bacteriology2Springer-VerlagNew York601623
    Google Scholar
  19. Garrity, GM, Holt, JG 2001b

    Phylum BXI. Chloroflexi. phy. nov

    Boone, DRCastenholz, RW eds. Bergey’s Manual of Systematic Bacteriology2Springer-VerlagNew York427446
    Google Scholar
  20. Green, BR 2003

    The evolution of light-harvesting antennas

    Green, BRParson, WW eds. Light-Harvesting Antennas in PhotosynthesisKluwer Academic PublishersDordrecht, The Netherlands129168
    Google Scholar
  21. Green, BR, Anderson, JM, Parson, WW 2003

    Photosynthetic membranes and their light-harvesting antennas

    Green, BRParson, WW eds. Light-Harvesting Antennas in PhotosynthesisKluwer Academic PublishersDordrecht, The Netherlands128
    Google Scholar
  22. Montaño, GA, Wu, HM, Lin, S, Brune, DC, Blankenship, RE 2003Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacusBiochemistry421024610251CrossRefPubMedGoogle Scholar
  23. Niedermeier, G, Shiozawa, JA, Lottspeich, F, Feick, RG 1994The primary structure of two chlorosome proteins from Chloroflexus aurantiacusFEBS Lett3426165CrossRefPubMedGoogle Scholar
  24. Nozawa, T, Ohtomo, K, Suzuki, M, Nakagawa, H, Shikama, Y, Konami, H, Wang, ZY 1994Structures of chlorosomes and aggregated BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13C-NMRPhotosynth Res41211233CrossRefGoogle Scholar
  25. Oelze, J, Golecki, JR 1995

    Membranes and chlorosomes of green bacteria: structure, composition and development

    Blankenship, RE, Madigan, MTBauer, CE eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands259278
    Google Scholar
  26. Persson, S, Sönksen, CP, Frigaard, N-U, Cox, RP, Roepstorff, P, Miller, M 2000Pigments and proteins in green bacterial chlorosomes studied by matrix assisted laser desorption ionization mass spectroscopyEur J Biochem267450456CrossRefPubMedGoogle Scholar
  27. Pšenčík, J, Ikonen, TP, Laurinmäki, P, Merckel, MC, Butcher, SJ, Serimaa, RE, Tuma, R 2004Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteriaBiophys J8711651172CrossRefPubMedGoogle Scholar
  28. Sakuragi, Y, Frigaard, N-U, Shimada, K, Matsuura, K 1999Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacusBiochim Biophys Acta1413172180PubMedGoogle Scholar
  29. Staehelin, LA, Golecki, JR, Fuller, RC, Drews, G 1978Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacusArch Microbiol119269277CrossRefGoogle Scholar
  30. Staehelin, LA, Golecki, JR, Drews, G 1980Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicolaBiochim Biophys Acta5893045PubMedGoogle Scholar
  31. Vassilieva, EV, Antonkine, ML, Zybailov, BL, Yang, F, Jakobs, CU, Golbeck, JH, Bryant, DA 2001Electron transfer may occur in the chlorosome envelope: The CsmI and CsmJ proteins of chlorosomes are 2Fe–2S ferredoxinsBiochemistry40464473CrossRefPubMedGoogle Scholar
  32. Vassilieva, EV, Ormerod, JG, Bryant, DA 2002aBiosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioformePhotosynth Res716981CrossRefGoogle Scholar
  33. Vassilieva, EV, Stirewalt, VL, Jakobs, CU, Frigaard, N-U, Inoue-Sakamoto, K, Baker, MA, Sotak, A, Bryant, DA 2002bSubcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmXBiochemistry4143584300CrossRefGoogle Scholar
  34. Wagner-Huber, R, Brunisholz, R, Frank, G, Zuber, H 1988The BChl c/e-binding polypeptides from chlorosomes of green photosynthetic bacteriaFEBS Lett239812CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Niels-Ulrik Frigaard
    • 1
  • Hui Li
    • 1
  • Peter Martinsson
    • 2
    • 5
  • Somes Kumar Das
    • 3
  • Harry A. Frank
    • 3
  • Thijs J. Aartsma
    • 2
  • Donald A. Bryant
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of BiophysicsLeiden UniversityLeidenThe Netherlands
  3. 3.Department of ChemistryUniversity of ConnecticutStorrsUSA
  4. 4.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Institute of Medical TechnologyUniversity of TampereFinland

Personalised recommendations