Photosynthesis Research

, Volume 83, Issue 3, pp 335–341

In vivo carotenoid triplet formation in response to excess light: a supramolecular photoprotection mechanism revisited

Regular paper


Carotenoids have been known for their photoprotective role for about 50 years. However, despite many advances in laser flash photolysis, no photodynamic studies have been so far performed on whole cells to determine the harmful threshold of light. In the present work, we investigate the coupling between energy conversion and energy deactivation, in isolated complexes of RC-LH1 and LH2 increasingly integrated systems up to intact cells of the purple anaerobic photosynthetic bacterium Rubrivivax gelatinosus. A continuous light similar to the mean daily sun irradiance on the surface of the earth is found to saturate the in vivo electron transfer turnover and to give rise to carotenoid triplet formation. This accounts for the widespread use of carotenoids among phototrophic prokaryotes and emphasizes their essential protective role in the natural environment.


carotenoid triplet light harvesting complex photosynthetic reaction center 





reaction center


light harvesting complexes






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Béal, D, Rappaport, F, Joliot, P 1999A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatusRev Sci Instr70202207CrossRefGoogle Scholar
  2. Bittl, R, Schlodder, E, Geisenheimer, I, Lubitz, W, Cogdell, RJ 2001Transient EPR and absorption studies of carotenoid triplet formation in purple bacterial antenna complexesJ Phys Chem B10555255535CrossRefGoogle Scholar
  3. Clayton, RK 1960The induced synthesis of catalase on Rhodobacter sphaeroidesBiochim Biophys Acta37575580CrossRefGoogle Scholar
  4. Fujii, R, Kurahashi, M, Hayakawa, Y, Saiki, K, Harada, J, Matsuura, K, Shimada, K, Koyama, Y 2004Natural selection of longer-chain carotenoids in the reaction center and shorter-chain carotenoids in the LH2 complexes from Rubrivivax gelatinosusCarotenoid Sci745Google Scholar
  5. Harada, J, Nagashima, KVP, Takaichi, S, Misawa, N, Matsuura, K, Shimada, K 2001Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopenePlant Cell Physiol4211121118CrossRefPubMedGoogle Scholar
  6. Jirsakova, V, Reiss-Husson, F 1994A specific carotenoid is required for reconstitution of the Rubrivivax gelatinosus B875 light harvesting complex from its subunit form B820FEBS Lett353151154CrossRefPubMedGoogle Scholar
  7. Jirsakova, V, Reiss-Husson, F, Agalidis, I, Vrieze, J, Hoff, AJ 1995Triplet states in reaction center, light-harvesting complex B875 and its spectral form B840 from Rubrivivax gelatinosus investigated by absorbance-detected electron spin resonance in zero magnetic field (ADMR)Biochim Biophys Acta1231313322Google Scholar
  8. Jirsakova, V, Reiss-Husson, F, van Dick, B, Owen, G, Hoff, AJ 1996Characterization of carotenoid triplet states in the light-harvesting complex B800–850 from the purple bacterium Rubrivivax gelatinosusPhotochem Photobiol64363368Google Scholar
  9. Monger, T, Cogdell, RJ, Parson, WW 1976Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteriaBiochim Biophys Acta449136153PubMedGoogle Scholar
  10. Parson, WW, Clayton, RK, Cogdell, RJ 1975Excited states of photosynthetic reaction centers at low redox potentialsBiochim Biophys Acta387265278PubMedGoogle Scholar
  11. Ronhgdonuwu, FS, Watanabe, Y, Fujii, R, Koyama, Y 2003A first detection of singlet to triplet conversion from the 11 Bu to the 13 Ag state and triplet internal conversion from the 13 Ag to the 13 Bu state in carotenoids: dependence on the conjugation lengthChem Phys Lett376292301CrossRefGoogle Scholar
  12. Rondonuwu, FS, Taguchi, T, Fujii, R, Yokoyama, K, Koyama, Y, Watanabe, Y 2004The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopyChem Phys Lett384364371CrossRefGoogle Scholar
  13. Takiff, L, Boxer, SG 1988Phosphorescence spectra of bacteriochlorophyllsJ Am Chem Soc11044254426CrossRefGoogle Scholar
  14. Takaichi, S, Shimada, K 1999Pigment composition of two pigment-protein complexes derives from anaerobically and semi-aerobically grown Rubrivivax gelatinosus, and identification of a new keto-carotenoid, 2-ketospirilloxanthinPlant Cell Physiol40613617Google Scholar
  15. Tiede, DM, Prince, RC, Dutton, PL 1976EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosumBiochim Biophys Acta449447467PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratoire de Génétique et Biophysique des PlantesUMRMarseilleFrance
  2. 2.Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations