Photosynthesis Research

, Volume 85, Issue 2, pp 149–159 | Cite as

Elicitors and priming agents initiate plant defense responses

  • Paul W. ParéEmail author
  • Mohamed A. Farag
  • Venkat Krishnamachari
  • Huiming Zhang
  • Choong-Min Ryu
  • Joseph W. Kloepper


Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C6 green-leaf volatiles and C4 bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.


chemical elicitors plant defense responses plant volatile emissions priming agents volicitin 



alcohol dehydrogenase


beet armyworm (Spodoptera exigua)


fatty acid conjugates


hydroperoxide lyase


high performance liquid chromatography


isom-erization factor


induced systemic resistance


jasmonic acid




met-hyl jasmonate


phenylalanine ammonia lyase


plant growth promoting rhizobacteria


systemic acquired resistance


volatile organic compounds


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alborn, HT, Turlings, TC, Jones, TH, Stenhagen, G, Loughrin, JH, Tumlinson, JH 1997An elicitor of plant volatiles from beet armyworm oral secretionScience276945949CrossRefGoogle Scholar
  2. Benhamou, N, Kloepper, JW, Quadt-Hallmann, A, Tuzun, S 1996Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteriaPhysiol Plant Pathol112919929Google Scholar
  3. Benhamou, N, Kloepper, JW, Tuzun, S 1998Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host responsePlanta204153168CrossRefGoogle Scholar
  4. DeMoraes, CM, Lewis, WJ, Paré, PW, Alborn, HT, Tumlinson, JH 1988Herbivore-infested plants selectively attract parasitoidsNature393570573Google Scholar
  5. Dyer, MI, Moon, AM, Brown, MR, Crossley, DA 1995Grasshopper crop and midgut extract effects on plants- an example of reward feedbackProc Natl Acad Sci USA9264756478Google Scholar
  6. Engelberth, J, Alborn, HT, Schmelz, EA, Tumlinson, JH 2004Airborne signals prime plants against insect herbivore attackProc Natl Acad Sci USA10117811785CrossRefPubMedGoogle Scholar
  7. Farag, MA, Fokar, M, Abol, H, Zhang, H, Allen, RD, Paré, PW 2005(Z)-3-Hexenol induces defense genes and down-stream metabolites in maizePlanta220900909CrossRefPubMedGoogle Scholar
  8. Felton, GW, Eichenseer, H 1999Herbivore saliva and induction of resistance to herbivores and pathogensAgurwal, ATuzun, SBent, E eds. Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and AgricultureAmerican Phytopathological SocietySt. Paul, MNGoogle Scholar
  9. Funk, CJ 2001Alkaline phosphatase activity in whitefly salivary glands and salivaArch Insect Biochem Physiol46165174CrossRefPubMedGoogle Scholar
  10. Gardener, HW, Dornbos, DL, Desjardins, A 1990Hexanal, trans-2-hexenal, and trans-2-nonenal inhibit soybean, Glycine max, seed germinationJ Agric Food Chem3813161320CrossRefGoogle Scholar
  11. Hase, S, Pelt, JA, Loon, LC, Pieterse, CMJ 2003Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infectionPhysiol Mol Plant Pathol62219226CrossRefGoogle Scholar
  12. Hatanaka, A 1993The biogeneration of green odor by green leavesPhytochemistry3412011218CrossRefGoogle Scholar
  13. Hermsmeier, D, Schittko, W, Baldwin, IT 2001Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate. I. Large-scale changes in the accumulation of growth-and defense-related plant mRNAsPlant Physiol125683700CrossRefPubMedGoogle Scholar
  14. Hildebrand, DF, Brown, GC, Jackson, DM, Hamilton, TR 1993Effect of some leaf emitted volatiles compounds on aphid population increaseJ Chem Ecol1918751887CrossRefGoogle Scholar
  15. Kessler, A, Baldwin, IT 2001Defensive function of herbivore-induced plant volatile emissions in natureScience29121412144CrossRefPubMedGoogle Scholar
  16. Kloepper, JW, Rodriguez-Kabana, R, Zehnder, GW, Murphy, J, Sikora, E, Fernandez, C 1999Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseasesAust Plant Pathol282733Google Scholar
  17. Kloepper, JW, Ryu, CM, Zhang, S 2004Induced systemic resistance and promotion of plant growth by Bacillus sppPhytopathology9412591266Google Scholar
  18. Koch, T, Bandemer, K, Boland, W 1997Biosynthesis of cis-jasmone: A pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phaseHelv Chem Acta80838850CrossRefGoogle Scholar
  19. Korth, KL 2003Profiling the response of plants to herbivorous insectsGenome Biol4221224CrossRefPubMedGoogle Scholar
  20. Korth, KL, Dixon, RA 1997Evidence for chewing insect-specific molecular events distinct from a general wound response in leavesPlant Physiol11512991305PubMedGoogle Scholar
  21. Lait, CG, Alborn, HT, Teal, PEA, Tumlinson, JH 2003Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sextaProc Natl Acad Sci USA10070277032CrossRefPubMedGoogle Scholar
  22. Leeman, M, den Ouden, FM, Pelt, JA, Dirkx, FPM, Steijl, H, Bakker, PAHM, Schippers, B 1996Iron availablility affects induction of systemic resistance to fusarium wilt of raddish by Pseudomonas fluorescensPhytopathology86149155Google Scholar
  23. Liu, L, Kloepper, JW, Tuzun, S 1995Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteriaPhytopathology85843847Google Scholar
  24. Mattiacci, L, Dicke, M, Posthumus, MA 1995β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic waspsProc Natl Acad Sci USA9220362040PubMedGoogle Scholar
  25. Maurhofer, M, Hase, C, Meuwly, P, Metraux, JP, Defago, G 1994Induction of systemic resistance of tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens CHA0: Influence of the gacA gene of pyoverdine productionPhytopathology84139146Google Scholar
  26. Meinwald, J 2003Understanding the chemistry of chemical communication: are we there yet? Proc Natl Acad Sci USA1001451414516CrossRefPubMedGoogle Scholar
  27. Mori, N, Alborn, HT, Teal, PEA, Tumlinson, JH 2001Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zeaJ Insect Physiol47749757CrossRefPubMedGoogle Scholar
  28. Paré, PW, Tumlinson, JH 1999Plant volatiles as a defense against insect herbivoresPlant Physiol121325331CrossRefPubMedGoogle Scholar
  29. Paré, PW, Alborn, HT, Tumlinson, JH 1998Concerted biosynthesis of an insect elicitor of plant volatilesProc Natl Acad Sci USA951397113975CrossRefPubMedGoogle Scholar
  30. Pieterse, CMJ, Wees, SCM, Ton, J, Pelt, JA, Loon, LC 2002Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thalianaPlant Biol4535544CrossRefGoogle Scholar
  31. Pohnert, G, Jung, V, Haukioja, E, Lempa, K, Boland, W 1999New fatty acid amides from regurgitant of Lepidopteran (Noctuidae, Geometridae) caterpillarsTetrahedron Lett551127511280Google Scholar
  32. Raupach, GS, Liu, L, Murphy, JF, Tuzun, S, Kloepper, JW 1996Induced systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth-promoting rhizobacteriaPlant Dis80891894Google Scholar
  33. Reymond, P, Weber, H, Damond, M, Farmer, EE 2000Differential gene expression in response to mechanical wounding and insect feeding in ArabidopsisPlant Cell127070720CrossRefGoogle Scholar
  34. Rodriguez-Saona, C, Crafts-Brandner, SJ, Paré, PW, Henneberry, TJ 2001Exogenous methyl jasmonate induces volatile emissions in cotton plantsJ Chem Ecol27679695CrossRefPubMedGoogle Scholar
  35. Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Wei, HX, Pare, PW, Kloepper, JW 2003aBacterial volatiles promote growth in ArabidopsisProc Natl Acad Sci USA10049274932CrossRefGoogle Scholar
  36. Ryu, CM, Hu, CH, Reddy, MS, Kloepper, JW 2003bDifferent signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringaeNew Phytolo160413420CrossRefGoogle Scholar
  37. Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Kloepper, JW, Paré, PW 2004aBacterial volatiles induce systemic resistance in ArabidopsisPlant Physiol13410171026CrossRefGoogle Scholar
  38. Ryu, CM, Murphy, JF, Mysore, KS, Kloepper, JW 2004bPlant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathwayPlant J39381392CrossRefGoogle Scholar
  39. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong XN and Pieterse CMJ (2003) Plant Cell 15: 760–770Google Scholar
  40. Truitt,  CL, Wei,  HX, Paré, PW 2004A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitinPlant Cell16523532CrossRefPubMedGoogle Scholar
  41. Peer, R, Niemann, GJ, Schippers, B 1991Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417rPhytopathology81728734Google Scholar
  42. Vronova, E, Inze, D, Breusegem, F 2002Signal transduction during oxidative stressJ Exp Bot5312271236CrossRefGoogle Scholar
  43. Wei, G, Kloepper, JW, Tuzun, S 1991Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteriaPhytopathology8115081512Google Scholar
  44. Zeringue, HJ 1992Effects of C6-C10 alkenals and alkanals on eliciting a defense response in the developing cotton ballPhytochemistry323052308CrossRefGoogle Scholar
  45. Zhou, T, Pauliz, TC 1994Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumberJ Phytopathol1425163Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Paul W. Paré
    • 1
    Email author
  • Mohamed A. Farag
    • 2
  • Venkat Krishnamachari
    • 1
  • Huiming Zhang
    • 1
  • Choong-Min Ryu
    • 3
  • Joseph W. Kloepper
    • 4
  1. 1.Chemistry & Biochemistry DepartmentTexas Tech UniversityLubbockUSA
  2. 2.Plant Biology DivisionSamuel Roberts Noble FoundationArdmoreUSA
  3. 3.Laboratory of Microbial GenomicsKorean Research Institute of Bioscience and BiotechnologyYusongS. Korea
  4. 4.Department of Entomology & Plant PathologyAuburn UniversityAuburnUSA

Personalised recommendations