Advertisement

Photosynthesis Research

, Volume 83, Issue 3, pp 317–328 | Cite as

Enzyme co-localization in pea leaf chloroplasts: glyceraldehyde-3-P dehydrogenase, triose-P isomerase, aldolase and sedoheptulose bisphosphatase

  • Louise E. AndersonEmail author
  • Nandita Gatla
  • Andrew A. Carol
Regular paper

Abstract

Nearest neighbor analysis of immunocytolocalization experiments indicates that the enzymes glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase are located close to one another in the pea leaf chloroplast stroma, and that aldolase is located close to sedoheptulose bisphosphatase. Direct transfer of the triose phosphates between glyceraldehyde-3-P dehydrogenase and triose-P isomerase, and from glyceraldehyde-3-P dehydrogenase and triose-P isomerase to aldolase, is then a possibility, as is direct transfer of sedoheptulose bisphosphate from aldolase to sedoheptulose bisphosphatase. Spatial organization of these enzymes may be important for efficient CO2 fixation in photosynthetic organisms. In contrast, there is no indication that fructose bisphosphatase is co-localized with aldolase, and direct transfer of fructose bisphosphate from aldolase to fructose bisphosphatase seems unlikely.

Keywords

aldolase enzyme co-localization fructose bisphosphatase functional enzyme complexes glyceraldehyde-3-P dehydrogenase Pisum sativum photosynthetic CO2-fixation sedoheptulose bisphosphatase spatial organization of Calvin cycle enzymes in the chloroplast triose-P isomerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, JB, Carol, AA, Brown, VK, Anderson, LE 2003A quantitative method for assessing co-localization in immuno-labeled thin section electron micrographsJ Struct Biol14395106CrossRefPubMedGoogle Scholar
  2. Anderson, LE 1971Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerasesBiochim Biophys Acta235237244PubMedGoogle Scholar
  3. Anderson, LE, Carol, AA 2004aEnzyme co-localization with Rubisco in pea leaf chloroplastsPhotosynth Res824958CrossRefGoogle Scholar
  4. Anderson, LE, Carol, AA 2004bSeven enzymes of carbon metabolism, including three Calvin cycle isozymes, are present in the secondary cell wall thickenings of the developing xylem tracheary elements in pea leavesInt J Plant Sci165243256CrossRefGoogle Scholar
  5. Anderson, LE, Goldhaber-Gordon, IM, Li, D, Tang, X-Y, Xiang, M, Prakash, N 1995aEnzyme-enzyme interaction in the chloroplast: glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase and aldolasePlanta196245255Google Scholar
  6. Anderson, LE, Wang, X, Gibbons, JT 1995bThree enzymes of carbon metabolism, or their antigenic analogs, in pea nucleiPlant Physiol108659667CrossRefGoogle Scholar
  7. Anderson, LE, Gibbons, JT, Wang, X 1996Distribution of ten enzymes of carbon metabolism in pea (Pisum sativum) chloroplastsInt J Plant Sci157525538CrossRefGoogle Scholar
  8. Anderson, LE, Yousefzai, R, Ringenberg, MR, Carol, AA 2004Both chloroplastic and cytosolic fructose bisphosphatase isozymes are present in the pea leaf nucleusPlant Sci166721730CrossRefGoogle Scholar
  9. Babadzhanova, MP, Babadzhanova, MA, Aliev, KA 2002Free and membrane-bound multienzyme complexes with Calvin cycle activities in cotton leavesRussian J Plant Physiol49592597CrossRefGoogle Scholar
  10. Beeckmans, S, Driessche, van, Kanarek, L 1990Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycleJ Cell Biochem43297306CrossRefPubMedGoogle Scholar
  11. Choi, KH, Tolan, DR 2004Presteady-state kinetic evidence for a ring-opening activity in fructose-1,6-(bis)phosphate aldolaseJ Am Chem Soc12634023403CrossRefPubMedGoogle Scholar
  12. Chueca, A, Sahrawy, M, Pagano, EA, Gorge, JL 2002Chloroplast fructose-1,6-bisphosphatase: structure and functionPhotosynth Res74235249CrossRefGoogle Scholar
  13. Dziewulska-Szwajkowska, D, Zmojdzian, M, Dobryszycki, P, Kochman, M, Dzugaj, A 2004The interaction of FBPase with aldolase: a kinetic and fluorescence investigation on chicken muscle enzymesComp Biochem Physiol B Biochem Mol Biol137115129CrossRefPubMedGoogle Scholar
  14. Easterby, JS 1981A generalized theory of the transition time for sequential enzyme reactionsBiochem J199155161PubMedGoogle Scholar
  15. Elcock, AH, Huber, GA, McCammon, JA 1997Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experimentBiochemistry361604916058CrossRefPubMedGoogle Scholar
  16. Fishbein, R, Benkovic, PA, Schray, KJ, Siewers, IJ, Steffens, JJ, Benkovic, SJ 1974Anomeric specificity of phosphofructokinase from rabbit muscleJ Biol Chem24960476051PubMedGoogle Scholar
  17. Frey, WA, Fishbein, R, de, Maine MM, Benkovic, SJ 1977Substrate form of D-frutose 1,6-bisphosphate utilized by fructose 1,6-bisphosphataseBiochemistry1624792484CrossRefPubMedGoogle Scholar
  18. Gavilanes, F, Salerno, C, Fasella, P 1981Heterologous enzyme–enzyme complex between D-fructose-1,6-bisphosphate aldolase and triosephosphate isomerase from Ceratitis capitataBiochim Biophys Acta660154156PubMedGoogle Scholar
  19. Gefflaut, T, Blonski, C, Perie, J, Willson, M 1995Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspectsProg Biophys Mol Biol63301340CrossRefPubMedGoogle Scholar
  20. Gontero, B, Cárdenas, ML, Ricard, J 1988A functional five-enzyme complex of chloroplasts involved in the Calvin cycleEur J Biochem173437443CrossRefPubMedGoogle Scholar
  21. Graciet, E, Lebreton, S, Gontero, B 2004Emergence of new regulatory mechanisms in the Benson–Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complexJ Exp Bot5512451254CrossRefPubMedGoogle Scholar
  22. Haake, V, Zrenner, R, Sonnewald, U, Stitt, M 1998A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plantsPlant J14147157CrossRefPubMedGoogle Scholar
  23. Haake, V, Geiger, M, Walch-Liu, Pia, Engels, C, Zrenner, R, Stitt, M 1999Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditionsPlant J17479489CrossRefGoogle Scholar
  24. Jebanathirajah, JA, Coleman, JR 1998Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacumPlanta204177182CrossRefPubMedGoogle Scholar
  25. Kachru, RB, Anderson, LE 1975Inactivation of pea leaf phosphofructokinase by light and dithiothreitolPlant Physiol55199202Google Scholar
  26. Liaud, MF, Lichtle, C, Apt, K, Martin, W, Cerff, R 2000Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathwayMol Biol Evol17213223PubMedGoogle Scholar
  27. MacGregor, JS, Singh, VN, Davoust, S, Melloni, E, Pontremoli, S, Horecker, BL 1980Evidence for formation of a rabbit liver aldolase – rabbit liver fructose-1,6-bisphosphatase complexProc Natl Acad Sci U S A7738893892PubMedGoogle Scholar
  28. Marques, IA, Ford, DM, Muschinek, G, Anderson, LE 1987Photosynthetic carbon metabolism in isolated pea chloroplasts: metabolite levels and enzyme activitiesArch Biochem Biophys252458466CrossRefPubMedGoogle Scholar
  29. Mendes, P, Kell, DB, Westerhoff, HV 1992Channelling can decrease pool sizeEur J Biochem204257266CrossRefPubMedGoogle Scholar
  30. Mendes, P, Kell, DB, Westerhoff, HV 1996Why and when channelling can decrease pool size at constant net flux in a simple dynamic channelBiochim Biophys Acta1289175186PubMedGoogle Scholar
  31. Moorhead, GB, Hodgson, RJ, Plaxton, WC 1994Copurification of cytosolic fructose-1,6-bisphosphatase and cytosolic aldolase from endosperm of germinating castor oil seedsArch Biochem Biophys312326335CrossRefPubMedGoogle Scholar
  32. Orosz, F, Ovadi, J 1986Dynamic interactions of enzymes involved in triosephosphate metabolismEur J Biochem160615619CrossRefPubMedGoogle Scholar
  33. Pontremoli, S, Melloni, E, Salamino, F, Sparatore, B, Michetti, M, Singh, VN, Horecker, BL 1979Evidence for an interaction between fructose 1,6-bisphosphatase and fructose 1,6-bisphosphate aldolaseArch Biochem Biophys197356363CrossRefPubMedGoogle Scholar
  34. Qi, J, Isupov, MN, Littlechild, JA, Anderson, LE 2001Chloroplast glyceraldehyde-3-P dehydrogenase contains a single disulfide bond located in the C-terminal extension to the B subunitJ Biol Chem2763524735252CrossRefPubMedGoogle Scholar
  35. Rakus, D, Mamczur, P, Gizak, A, Dus, D, Dzugaj, A 2003Colocalization of muscle FBPase and muscle aldolase on both sides of the Z-lineBiochem Biophys Res Commun311294299CrossRefPubMedGoogle Scholar
  36. Rakus, D, Pasek, M, Krotkiewski, H, Dzugaj, A 2004Interaction between muscle aldolase and muscle fructose 1,6-bisphosphatase results in the substrate channelingBiochemistry431494814957CrossRefPubMedGoogle Scholar
  37. Razdan, K, Heinrikson, RL, Zurcher-Neely, H, Morris, PW, Anderson, LE 1992Chloroplast and cytoplasmic enzymes: isolation and sequencing of cDNAs coding for two distinct pea chloroplast aldolasesArch Biochem Biophys298192197CrossRefPubMedGoogle Scholar
  38. Reynolds, SJ, Yates, DW, Pogson, CI 1971Dihydroxyacetone phosphate. Its structure and reactivity with α-glycerophosphate dehydrogenase aldolase and triose phosphate isomerase and some possible metabolic implicationsBiochem J122285297PubMedGoogle Scholar
  39. Salerno, C, Ovadi, J 1982Interaction between D-fructose-1,6-bisphosphate aldolase and triosephosphate isomerase. Mutual protection against perchloric acid denaturationFEBS Lett138270272CrossRefPubMedGoogle Scholar
  40. Sainis, JK, GC, Harris 1986The association of ribulose-1,5-bisphosphate carboxylase with phosphoriboisomerase and phosphoribulokinaseBiochem Biophys Res Commun139947954CrossRefPubMedGoogle Scholar
  41. Schray, KJ, Fishbein, R, Bullard, WP, Benkovic, SJ 1975The anomeric form of D-fructose 1,6-bisphosphate used as substrate in the muscle and yeast aldolase reactionsJ Biol Chem25048834887PubMedGoogle Scholar
  42. Stephan, P, Clarke, F, Morton, D 1986The indirect binding of triose-phosphate isomerase to myofibrils to form a glycolytic enzyme mini-complexBiochim Biophys Acta873127135PubMedGoogle Scholar
  43. Süss, KH, Arkona, C, Manteuffel, R, Adler, K 1993Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situProc Nat Acad Sci9055145518PubMedGoogle Scholar
  44. Trentham, DR, McMurray, CH, Pogson, CI 1969The active chemical state of D-glyceraldehyde-3-phosphate dehydrogenase in its reactions with D-glyceraldehye-3-phosphate dehydrogenase, aldolase and triose phosphate isomeraseBiochem J1141924PubMedGoogle Scholar
  45. Unkles, SE, Logsdon, JM,Jr., Robison, K, Kinghorn, JR, Duncan, JM 1997The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycotaJ␣Bacteriol17968166823PubMedGoogle Scholar
  46. Yañez AJ, Ludwig HC, Bertinat R, Spichiger C, Gatica R, Berlien G, Leon O, Brito M, Concha II, Slebe JC (2005) Different involvement for aldolase isoenzymes in kidney glucose metabolism: aldolase B but not aldolase A colocalizes and forms a complex with FBPase. J Cell Physiol 202: 743–753Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Louise E. Anderson
    • 1
    Email author
  • Nandita Gatla
  • Andrew A. Carol
  1. 1.Department of Biological SciencesUniversity of Illinois-ChicagoChicagoUSA

Personalised recommendations