Photosynthesis Research

, Volume 84, Issue 1–3, pp 355–365 | Cite as

How fast can Photosystem II split water? Kinetic performance at high and low frequencies

  • Gennady Ananyev
  • G. Charles. Dismukes


Molecular oxygen evolution from water is a universal signature of oxygenic photosynthesis. Detection of the presence, speed and efficiency of the enzymatic machinery that catalyzes this process in vivo has been limited. We describe a laser-based fast repetition rate fluorometer (FRRF) that allows highly accurate and rapid measurements of these properties via the kinetics of Chl-a variable fluorescence yield (Fv) in living cells and leaves at repetition rates up to 10 kHz. Application to the detection of quenching of Fv is described and compared to flash-induced O2 yield data. Period-four oscillations in both Fv and O2, caused by stimulation of primary charge recombination by the O2 evolving complex (WOC) within Photosystem II (PS II), are directly compared. The first quantitative calculations of the enzymatic parameters of the Kok model (α – miss; β – double hit; S-state populations) are reported from Fv data over a 5 kHz range of flash frequencies that is 100-fold wider than previously examined. Comparison of a few examples of cyanobacteria, green algae and spinach reveals that Arthrospira m., a cyanobacterium that thrives in alkaline carbonate lakes, exhibits the fastest water-splitting rates ever observed thus farin vivo. In all oxygenic phototrophs examined thus far, an unprecedented large increase in the Kok α and β parameters occur at both high and low flash frequencies, which together with their strong correlation, indicates that PS II-WOC centers split water at remarkably lower efficiencies and possibly by different mechanisms at these extreme flash frequencies. Revisions to the classic Kok model are anticipated.


Arthrospira Chlorella Kok S-states; oxygen evolution photosynthesis Photosystem II Spirulina variable fluorescence water oxidation 


α, β

miss and double hit parameters in Kok model




fast repetition rate fluorometer


variable fluorescence


Photosystem II


dark interval between single turnover flashes


single turnover flash with saturated light intensity


yield of quantum efficiency Fv/Fm on 1...


water-oxidizing complex


redox active tyrosine on the D1 protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ananyev, GM, Dismukes, GC 1996High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostaticsBiochemistry351460814617PubMedGoogle Scholar
  2. Babcock, GT, Blankenship, RE, Sauer, K 1976Reaction-kinetics for positive charge accumulation on water side of chloroplast Photosystem 2FEBS Lett61286289PubMedGoogle Scholar
  3. Barzda, V, Vengris, M, Valkunas, L, Grondelle, R, Amerongen, H 2000Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plantsBiochemistry391046810477PubMedGoogle Scholar
  4. Chekalyuk, AM, Hoge, FE, Wright, CW, Swift, RN 2000Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristicsPhotosynth Res663344CrossRefGoogle Scholar
  5. Clausen, J, Debus, RJ, Junge, W 2004Time-resolved oxygen production by PS II: chasing chemical intermediatesBiochim Biophys Acta Bioenerg1655184194CrossRefGoogle Scholar
  6. Dasgupta, J, Willigen, RTV, Dismukes, GC 2004Consequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonatePhys Chem Chem Phys647934802Google Scholar
  7. Dekker, JP, Gorkom, HJ, Wessink, J, Ouwehand, L 1984Absorbance difference spectra of the successive redox states of the oxygen-evolving apparatus of photosynthesisBiochim Biophys Acta76719Google Scholar
  8. Wijn, R, Gorkom, HJ 2002S-state dependence of the miss probability in Photosystem IIPhotosynth Res72217222CrossRefGoogle Scholar
  9. Delosme, R 1971Variations in fluorescence yield of chlorophyll in-vivo during very intense flashesComptes Rendus Hebdomadaires des Seances de L’Academic Academie des Sciences Serie D27228282831Google Scholar
  10. Delosme, R, Joliot, P 2002Period four oscillations in chlorophyll a fluorescencePhotosynth Res73165168CrossRefGoogle Scholar
  11. Dismukes, GC, Siderer, Y 1980EPR spectroscopic observations of a manganese center associated with water oxidation in spinach chloroplastsFEBS Lett1217880CrossRefGoogle Scholar
  12. Ferreira, KN, Iverson, TM, Maghlaoui, K, Barber, J, Iwata, S 2004Architecture of the photosynthetic oxygen-evolving centerScience30318311838PubMedGoogle Scholar
  13. Govindjee,  199563 Years since Kautsky – chlorophyll-a fluorescenceAust J Plant Physiol22131160Google Scholar
  14. He, J, Chow, WS 2003The rate coefficient of repair of Photosystem II after photoinactivationPhysiol Plant118297304CrossRefGoogle Scholar
  15. Joliot, P 2003Period-four oscillations of the flash-induced oxygen formation in photosynthesisPhotosynth Res766572CrossRefGoogle Scholar
  16. Joliot P and Joliot A (1968) A polarographic method for detection of oxygen production and reduction of hill reagent by isolated chloroplasts. Biochim Biophys Acta 153: 625– 638Google Scholar
  17. Joliot, P, Barbieri, G, Chabaud, R 1969A new model of photochemical centers in Photosystem-IIPhotochem Photobiol10309329Google Scholar
  18. Junge, W, Renger, G, Auslander, W 1977Proton release into internal phase of thylakoids due to photosynthetic water oxidation – periodicity under flashing lightFEBS Lett79155159PubMedGoogle Scholar
  19. Koike, H, Hanssum, B, Inoue, Y, Renger, G 1987Temperature dependence of S-state transition in thermophilic cyanobacterium,Synechococcus vulcanus Copeland, measured by absorption changes in UV regionBiochim Biophys Acta893524533Google Scholar
  20. Kok, B, Forbush, B, McGloin, M 1970Cooperation of charges in photosynthetic O2 evolution. I. A linear four-step mechanismPhotochem Photobiol11457475PubMedGoogle Scholar
  21. Kolber, ZS, Prasil, O, Falkowski, PG 1998Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocolsBiochim Biophys Acta Bioenerg136788106CrossRefGoogle Scholar
  22. Lazar, D 1999Chlorophyll a fluorescence inductionBiochim Biophys Acta Bioenerg1412128CrossRefGoogle Scholar
  23. Maxwell, K, Johnson, GN 2000Chlorophyll fluorescence-a practical guideJ Exp Bot51659668PubMedGoogle Scholar
  24. Nedbal, L, Trtilek, M, Kaftan, D 1999Flash fluorescence induction: a novel method to study regulation of Photosystem IIJ Photochem Photobiol48154157CrossRefGoogle Scholar
  25. Osmond, B, Ananyev, G, Berry, J, Langdon, C, Kolber, Z, Lin, GH, Monson, R, Nichol, C, Rascher, U, Schurr, U, Smith, S, Yakir, D 2004Changing the way we think about global change research: scaling up in experimental ecosystem scienceGlobal Change Biol10393407CrossRefGoogle Scholar
  26. Qian, M, Al-Khaldi, SF, Putnam-Evans, C, Bricker, TM, Burnap, RL 1997Photoassembly of the Photosystem II (Mn)4 cluster in site-directed mutants impaired in the binding of the manganese-stabilizing proteinBiochemistry361524415252PubMedGoogle Scholar
  27. Razeghifard, MR, Pace, RJ 1997Electron paramagnetic resonance kinetic studies of the S states in spinach PS II membranesBiochim Biophys Acta Bioenerg1322141150CrossRefGoogle Scholar
  28. Reifarth, F, Christen, G, Renger, G 1997Fluorometric equipment for monitoring P680+ reduction in PS II preparations and green leavesPhotosynth Res51231242CrossRefGoogle Scholar
  29. Renger, G, Govindjee,  1993How plants and cyanobacteria make oxygen: 25 years of period four oscillationsPhotosynth Res38211469CrossRefGoogle Scholar
  30. Renger, B, Weiss, W 1986Functional and structural aspects of photosynthetic water oxidationBiochem Soc Trans141720PubMedGoogle Scholar
  31. Schlodder, E, Brettel, K, Witt, HT 1985Relation between microsecond reduction kinetics of photooxidized Chl-a (P-680) and photosynthetic water oxidationBiochim Biophys Acta808123131Google Scholar
  32. Schreiber, U, Neubauer, C, Schliwa, U 1993PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light – a highly sensitive new tool in basic and applied photosynthesis researchPhotosynth Res366572CrossRefGoogle Scholar
  33. Schreiber, U, Endo, T, Mi, HL, Asada, K 1995Quenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteriaPlant Cell Physiol36873882Google Scholar
  34. Schreiber, U, Kuhl, M, Klimant, I, Reising, H 1996Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobePhotosynth Res47103109CrossRefGoogle Scholar
  35. Shinkarev, VP 2003Oxygen evolution in photosynthesis: simple analytical solution for the Kok modelBiophys J85435441PubMedGoogle Scholar
  36. Trtilek, M, Kramer, DM, Koblizek, M, Nedbal, L 1997Dual-modulation LED kinetic fluorometerJ Lumin72597599CrossRefGoogle Scholar
  37. Vonshak, A, Abeliovich, A, Boussiba, S, Arad, S, Richmond, A 1982Production ofSpirulina biomass – effects of environmental factors and population densityBiomass2175185CrossRefGoogle Scholar
  38. Zankel, KL 1973Rapid fluorescence changes observed in chloroplasts – their relationship to O2 evolving systemBiochim Biophys Acta325138148PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemistry and Princeton Environmental InstitutePrinceton UniversityPrincetonUSA

Personalised recommendations