Photosynthesis Research

, Volume 85, Issue 1, pp 15–32 | Cite as

Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant

Review

Abstract

The molecular architectures of photosynthetic complexes are rapidly becoming available through the power of X-ray crystallography. These complexes are comprised of antenna complexes, which absorb and transfer energy into photochemical reaction centers. Most reaction centers, found in both oxygenic and non-oxygenic species, are connected to transmembrane chlorophyll containing antennas, and the crystal structures of these antennas contain information on the structure of the entire complex as well as clear indications on their modes of functional association. In cyanobacteria and red alga, most of the Photosystem II associated light harvesting is performed by an enormous (3–7 MDa) membrane attached complex called the phycobilisome (PBS). While the crystal structures of many isolated components of different PBSs have been determined, the structure of the entire complex as well as its manner of association with Photosystem II can only be suggested. In this review, the structural information obtained on the isolated components will be described. The structural information obtained from the components provides the basis for the modeled reconstruction of this giant complex.

Keywords

antenna proteins cyanobacteria energy transfer photosynthesis X-ray crystallography 

Abbreviations

APC

allophycocyanin

Cc-PC

Cyanidium caldarium phycocyanin

Fd-PC

Fremyella diplosiphon phycocyanin

Gm-PE

Griffithisia monilis phycoerythrin

LHC

light harvesting complex

Ml-APC

Mastigoclaudus laminosus allophycocyanin

Ml-PC

Mastigoclaudus laminosus phycocyanin

NMA

γ-N-methyl asparagines

PBPs

phycobiliproteins

PBSs

phycobilisomes

PC

phycocyanin

PCB

phycocyanobilin cofactor

PDB

the Protein Data Bank

PE

phycoerythrobilin

PEB

phycoerythrin

PEC

phycoerythrocyanin

PEG

polyethylene glycol

PS I

Photosystem I

PS II

Photosystem II

rms

root mean square

Ps-PE

Porphyridium sordidum phycoerythrin

Pu-PC

Polysiphonia urceolata phycocyanin

Py-APC

Porphyra yezoensis allophycocyanin

S7-PC

Synechococcus sp. PCC7002 phycocyanin

Sp-APC

Spirulina platensis allophycocyanin

Sp-PC

Spirulina platensis phycocyanin

TEM

transmission electron microscopy

Te-PC

Thermosynechcoccus elongatus phycocyanin

Tv-PC

Thermosynechcoccus vulcanus phycocyanin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adir, N., Dobrovetsky, Y., Lerner, N. 2001Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assemblyJ Mol Biol.3137181Google Scholar
  2. Adir, N., Lerner, N. 2003The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomesJ Biol Chem.2782592625932Google Scholar
  3. Adir, N., Vainer, R., Lerner, N. 2002Refined structure of C-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structureBiochim Biophys Acta.1556168174Google Scholar
  4. Adir, N., Zer, H., Shochat, S., Ohad, I. 2003Photoinhibition – a historical perspectivePhotosynth Res.76343370Google Scholar
  5. Anderson, LK., Toole, CM. 1998A model for early events in the assembly pathway of cyanobacterial phycobilisomesMol Microbiol.30467474Google Scholar
  6. Apt, KE., Collier, JL., Grossman, AR. 1995Evolution of the phycobiliproteinsJ Mol Biol.2487996Google Scholar
  7. Aspinwall, CL., Sarcina, M., Mullineaux, CW. 2004Phycobilisome mobility in the cyanobacterium Synechococcus spPCC7942179187Google Scholar
  8. Awramik, SM. 1992The oldest records of photosynthesisPhotosynth Res.337589Google Scholar
  9. Beck, WF., Sauer, K. 1992Energy-transfer and exciton-state relaxation processes in allophycocyaninJ Phys Chem.9646584666Google Scholar
  10. Bennett, A., Bogorad, L. 1973Complementary chromatic adaptation in a filamentous blue-green algaJ Cell Biol.58419435Google Scholar
  11. Ben-Shem, A., Frolow, F., Nelson, N. 2003Crystal structure of plant photosystem INature.426630635Google Scholar
  12. Blankenship RE., Olson JM., Miller M. (1995). Antenna complexes from green photosynthetic bacteria, In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp. 399–435. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  13. Brejc, K., Ficner, R., Huber, R., Steinbacher, S. 1995Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolutionJ Mol Biol.249424440Google Scholar
  14. Brocks, JJ., Logan, GA., Buick, R., Summons, RE. 1999Archean molecular fossils and the early rise of eukaryotesScience.28510331036Google Scholar
  15. Bryant, DA., Cohen-Bazire, G. 1981Effects of chromatic illumination on cyanobacterial phycobilisomesEvidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena7409415424Google Scholar
  16. Bryant, DA., Glazer, AN., Eiserling, FA. 1976Characterization and structural properties of the major biliproteins of Anabaena spArch Microbiol.1106175Google Scholar
  17. Bryant, DA., Guiglielmi, G., Tandeaude Marsac, N., Castets, A., Cohen-Bazire, G. 1979The structure of cyanobacterial phycobilisomes: a modelArch Microbiol.123113127Google Scholar
  18. Buick, R. 1992The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakesScience.2557477Google Scholar
  19. Capuano, V., Braux, AS., Tandeaude Marsac, N., Houmard, J. 1991The “anchor polypeptide” of cyanobacterial phycobilisomesMolecular characterization of the Synechococcus sp. PCC630172397247Google Scholar
  20. Chang, WR., Jiang, T., Wan, ZL., Zhang, JP., Yang, ZX., Liang, DC. 1996Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolutionJ Mol Biol.262721731Google Scholar
  21. Collier, JL., Grossman, AR. 1994A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteriaEMBO J.1310391047Google Scholar
  22. Cramer, C. 1862Das Rhodospermin, ein krystalloidischer, quellbarer Korper, im Zellinhalt verschiedener FlorideenVierteljahrsschr Naturforsch Ges Zurich.7350365Google Scholar
  23. Danielsson, R., Albertsson, PA., Mamedov, F., Styring, S. 2004Quantification of Photosystem I and II in different parts of the thylakoid membrane from spinachBiochim Biophys Acta.16085361Google Scholar
  24. Davis, AM., Teague, SJ., Kleywegt, GJ. 2003Application and limitations of X-ray crystallographic data in structure-based ligand and drug designAngew Chem Int Ed.4227182736Google Scholar
  25. Lorimier, R., Bryant, DA., Stevens, SE.,Jr. 1990Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptideBiochim Biophys Acta.10192941Google Scholar
  26. De Lorimier, R., Guglielmi, G., Bryant, DA., Stevens, SE.,Jr. 1990Structure and mutation of a gene encoding a Mr 33,000 phycocyanin-associated linker polypeptideArch Microbiol.153541549Google Scholar
  27. De Marais, DJ. 2000EvolutionWhen did photosynthesis emerge on Earth?. Science.28917031705Google Scholar
  28. Debreczeny, MP., Sauer, K., Zhou, J., Bryant, DA. 1993Monomeric C-phycocyanin at room temperature and 77 K: resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constantsJ Phys Chem.9798529862Google Scholar
  29. Ducret, A., Muller, SA., Goldie, KN., Hefti, A., Sidler, WA., Zuber, H., Engel, A. 1998Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena spPCC7120369388Google Scholar
  30. Duerring, M., Huber, R., Bode, W. 1988The structure of gamma- N-methylasparagine in C-phycocyanin from Mastigocladus laminosus and Agmenellum quadriplicatumFEBS Lett.236167170Google Scholar
  31. Duerring, M., Huber, R., Bode, W., Ruembeli, R., Zuber, H. 1990Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 ÅJ Mol Biol.211633644Google Scholar
  32. Duerring, M., Schmidt, GB., Huber, R. 1991Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolutionJ Mol Biol.217577592Google Scholar
  33. Edington, MD., Riter, RE., Beck, WF. 1995Evidence for coherent energy transfer in allophycocyanin trimersJ Phys Chem.991569915704Google Scholar
  34. Edington, MD., Riter, RE., Beck, WF. 1996Interexciton-state relaxation and exciton localization in allophycocyanin trimersJ Phys Chem.1001420614217Google Scholar
  35. Edwards, MR., MacColl, R., Eisele, LE. 1996Some physical properties of an unusual C-phycocyanin isolated from a photosynthetic thermophileBiochim Biophys Acta.12766470Google Scholar
  36. Ferreira, KN., Iverson, TM., Maghlaoui, K., Barber, J., Iwata, S. 2004Architecture of the photosynthetic oxygen-evolving centerScience.30318311838Google Scholar
  37. Ficner, R., Lobeck, K., Schmidt, G., Huber, R. 1992Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolutionJ Mol Biol.228935950Google Scholar
  38. Fisher, RG., Woods, NE., Fuchs, HE., Sweet, RM. 1980Three-dimensional structures of C-phycocyanin and B-phycoerythrin at 5-Å resolutionJ Biol Chem.25550825089Google Scholar
  39. Forster, T. 1948Zwischenmolekulare Energiewanderung und FluoreszenzAnn Physik.25575Google Scholar
  40. Frigaard, N-U, Vassilieva, EV, Li, H, Milks, KJ, Zhao, J, Bryant, DA 2001

    The remarkable chlorosome

    In: PS2001 Proceedings of the 12th International Congress on Photosynthesis, Vol.S1. CSIRO PublishingMelbourne
    Google Scholar
  41. Gantt, E., Conti, SF. 1966Granules associated with the chloroplast lamellae of Porphyridium cruentumJ Cell Biol.29423434Google Scholar
  42. Gantt, E., Conti, SF. 1966Phycobiliprotein localization in algaeBrookhaven Symp Biol.19393405Google Scholar
  43. Glauser, M., Bryant, DA., Frank, G., Wehrli, E., Rusconi, SS., Sidler, W., Zuber, H. 1992Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp PCCEur J Biochem.7120907915Google Scholar
  44. Glauser, M., Stirewalt, VL., Bryant, DA., Sidler, W., Zuber, H. 1992Structure of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactionsEur J Biochem.205927937Google Scholar
  45. Glazer, AN. 1985Light harvesting by phycobilisomesAnnu Rev Biophys Biophys Chem.144777Google Scholar
  46. Glazer, AN. 1989Light guidesDirectional energy transfer in a photosynthetic antenna. J Biol Chem.26414Google Scholar
  47. Glazer, AN., Lundell, DJ., Yamanaka, G., Williams, RC. 1983The structure of a “simple” phycobilisomeAnn Microbiol (Paris).134159180Google Scholar
  48. Gomez-Lojero CPerez-Gomez, B, Shen, G, Schluchter, WM, Bryant, DA 2003Interaction of ferredoxin: NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002Biochemistry421380013811Google Scholar
  49. Grossman, AR., Schaefer, MR., Chiang, GG., Collier, JL. 1993The phycobilisome, a light-harvesting complex responsive to environmental conditionsMicrobiol Rev.57725749Google Scholar
  50. Grossman, AR., Bhaya, D., He, Q. 2001Tracking the light environment by cyanobacteria and the dynamic nature of light harvestingJ Biol Chem.2761144911452Google Scholar
  51. *Hedges SB., Chen H., Kumar S, Wang DY., Thompson AS., Watanabe H. (2001). A genomic timescale for the origin of eukaryotes. BMC Evol Biol. 1:4Google Scholar
  52. Hedges SB., Blair JE., Venturi ML., Shoe JL. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol. 4:2Google Scholar
  53. Homoelle, BJ., Beck, WF. 1997Solvent Accessibility of the phycocyanobilin chromophore in the R subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein–matrix solvation dynamicsBiochemistry.361297012975Google Scholar
  54. Homoelle, BJ., Edington, MD., Diffey, WM., Beck, WF. 1998Stimulated photon-echo and transient-grating studies of protein–matrix solvation dynamics and interexciton-state radiationless decay in alpha phycocyanin and allophycocyaninJ Phys Chem.10230443052Google Scholar
  55. Huber, R. 1989Nobel lectureA structural basis of light energy and electron transfer in biology. EMBO J.821252147Google Scholar
  56. Inoue, N., Emi, T., Yamane, Y., Kashino, Y., Koike, H., Satoh, K. 2000Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanusPlant Cell Physiol.41515522Google Scholar
  57. Isono, T., Katoh, T. 1987Subparticles of anabaena phycobilisomes IIMolecular assembly of allophycocyanin cores in reference to “anchor” protein. Arch Biochem Biophys.256317324Google Scholar
  58. Jiang, T., Zhang, J., Liang, D. 1999Structure and function of chromophores in R-phycoerythrin at 1.9 Å resolutionProteins.34224231Google Scholar
  59. Jiang, T., Zhang, JP., Chang, WR., Liang, DC. 2001Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisomeBiophys J.8111711179Google Scholar
  60. Jordan, P., Fromme, P., Witt, HT., Klukas, O., Saenger, W., Krauss, N. 2001Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolutionNature.411909917Google Scholar
  61. Kamiya, N., Shen, JR. 2003Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolutionProc Natl Acad Sci USA.10098103Google Scholar
  62. Kehoe, DM., Grossman, AR. 1994Complementary chromatic adaptation: photoperception to gene regulationSemin Cell Biol.5303313Google Scholar
  63. Kirilovsky, D., Ohad, I. 1986Functional assembly in vitro of phycobilisomes with isolated Photosystem II particles of eukaryotic chloroplastsJ Biol Chem.2611231712323Google Scholar
  64. Klotz, AV., Leary, JA., Glazer, AN. 1986Post-translational methylation of asparaginyl residuesIdentification of β-711589115894Google Scholar
  65. Knoll, AH., Bambach, RK., Canfield, DE., Grotzinger, JP. 1996Comparative earth history and late permian mass extinctionScience.273452457Google Scholar
  66. Knox, RS. 1999Ultrashort processes and biologyJ Photochem Photobiol B.498188Google Scholar
  67. Koepke, J., Hu, X., Muenke, C., Schulten, K., Michel, H. 1996The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianumStructure.4581597Google Scholar
  68. Kostyuchenko, VA., Leiman, PG., Chipman, PR., Kanamaru, S., Raaij, MJ., Arisaka, F., Mesyanzhinov, VV., Rossmann, MG. 2003Three-dimensional structure of bacteriophage T4 baseplateNat Struct Biol.10688693Google Scholar
  69. Kuhlbrandt, W., Wang, DN. 1991Three-dimensional structure of plant light-harvesting complex determined by electron crystallographyNature.350130134Google Scholar
  70. Li, H., Sherman, LA. 2002Characterization of Synechocystis sp. strain PCC 6803 and Δnbl mutants under nitrogen-deficient conditionsArch Microbiol.178256266Google Scholar
  71. Liu, JY., Jiang, T., Zhang, JP., Liang, DC. 1999Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolutionJ Biol Chem.2741694516952Google Scholar
  72. Liu, JY., Zhang, JP., Wan, ZL., Liang, DC., Wu, HJ. 1998Crystallization and preliminary X-ray studies of allophycocyanin from red alga Porphyra yezoensisActa Crystallogr D Biol Crystallogr.54662664Google Scholar
  73. Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., Chang, W. 2004Crystal structure of spinach major light-harvesting complex at 2.72 Å resolutionNature.428287292Google Scholar
  74. Lundell, DJ., Glazer, AN. 1983Molecular architecture of a light-harvesting antennaStructure of the18894901Google Scholar
  75. MacColl, R. 1998Cyanobacterial phycobilisomesJ Struct Biol.12431134Google Scholar
  76. Molisch, H. 1894Das phycoerythrin, seine Krystallisirbarkeit und chemischeNatur Bot Z.52177189Google Scholar
  77. Molisch, H. 1895Das Phycocyan, ein krystallisirbarer EiweisskorperNatur Bot Z.53131135Google Scholar
  78. Montano, GA., Bowen, BP., LaBelle, JT., Woodbury, NW., Pizziconi, VB., Blankenship, RE. 2003Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modelingBiophys J.8525602565Google Scholar
  79. Mullineaux, CW., Tobin, MJ., Jones, GR. 1997Mobility of photosynthetic complexes in thylakoid membranesNature.390421424Google Scholar
  80. Nield, J., Rizkallah, PJ., Barber, J., Chayen, NE. 2003The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatusJ Struct Biol.141149155Google Scholar
  81. Olson, JM. 1998Chlorophyll organization and function in green photosynthetic bacteriaPhotochem Photobiol.676175Google Scholar
  82. Padyana, AK., Bhat, VB., Madyastha, KM., Rajashankar, KR., Ramakumar, S. 2001Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensisBiochem Biophys Res Commun.282893898Google Scholar
  83. Pastore, A., Lesk, AM. 1990Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationshipProteins.8133155Google Scholar
  84. Pizarro, SA., Sauer, K. 2001Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptidesPhotochem Photobiol.73556563Google Scholar
  85. Prasil, O., Adir, N, Ohad, I 1992

    Dynamics of Photosystem II: mechanism of photoinhibition and recovery processes

    Barber, J eds. The Photosystems: Structure, Function and Molecular BiologyElsievier Science PublishersAmsterdam295348
    Google Scholar
  86. Prince, SM., Papiz, MZ., Freer, AA., McDermott, G., Hawthornthwaite-Lawless, AM., Cogdell, RJ., Isaacs, NW. 1997Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactionsJ Mol Biol.268412423Google Scholar
  87. Rakhimberdieva, MG., Boichenko, VA., Karapetyan, NV., Stadnichuk, IN. 2001Interaction of phycobilisomes with Photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensisBiochemistry.401578015788Google Scholar
  88. Reuter, W., Wiegand, G., Huber, R., Than, ME. 1999Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8 from phycobilisomes of Mastigocladus laminosusProc Natl Acad Sci USA713631368Google Scholar
  89. Richaud, C., Zabulon, G., Joder, A., Thomas, JC. 2001Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803J Bacteriol.18329892994Google Scholar
  90. Ritter, S., Hiller, RG., Wrench, PM., Welte, W., Diederichs, K. 1999Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-Å resolutionJ Struct Biol.1268697Google Scholar
  91. Roszak, AW., Howard, TD., Southall, J., Gardiner, AT., Law, CJ., Isaacs, NW., Cogdell, RJ. 2003Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustrisScience.30219691972Google Scholar
  92. Samsonoff, WA., MacColl, R. 2001Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitatArch Microbiol.176400405Google Scholar
  93. Sarcina, M., Tobin, MJ., Mullineaux, CW. 2001Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem.2764683046834Google Scholar
  94. Saridakis, E., Chayen, NE. 2003Systematic improvement of protein crystals by determining the supersolubility curves of phase diagramsBiophys J.8412181222Google Scholar
  95. Sauer, K., Scheer, H. 1988Exitation transfer in C-phycocyaninForster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins from Agmenellum quadruplaticum and Mastigocladus laminosus. Biochim Biophys Acta.936157170Google Scholar
  96. Schirmer, T., Bode, W., Huber, R. 1987Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolutionA common principle of phycobilin–protein interaction. J Mol Biol.196677695Google Scholar
  97. Schirmer, T., Bode, W., Huber, R., Sidler, W., Zuber, H. 1985X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structuresJ Mol Biol.184257277Google Scholar
  98. Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M., Hackert, ML. 1986Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum The molecular model and its implications for light-harvestingJ Mol Biol.188651676Google Scholar
  99. Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., Yonath, A. 2000Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolutionCell.102615623Google Scholar
  100. Searle, GF., Barber, J., Porter, G., Tredwell, CJ. 1978Picosecond time-resolved energy transfer in Porphyridium cruentum Part II. In the isolated light harvesting complex (phycobilisomes)Biochim Biophys Acta.501246256Google Scholar
  101. Shen, G., Boussiba, S., Vermaas, WF. 1993Synechocystis sp PCC 6803 strains lacking Photosystem I and phycobilisome functionPlant Cell.518531863Google Scholar
  102. Stec, B., Troxler, RF., Teeter, MM. 1999Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assemblyBiophys J.7629122921Google Scholar
  103. Svedberg, T., Lewis, NB. 1928The molecular weights of phycoerythrin and of phycocyaninJ Am Chem Soc.50525536Google Scholar
  104. Swanson, RV., Glazer, AN. 1990Phycobiliprotein methylationEffect of the γ-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol.214787796Google Scholar
  105. Tandeaude Marsac, N. 2003Phycobiliproteins and phycobilisomes: the early observationsPhotosynth Res.76197205Google Scholar
  106. Ting, CS., Rocap, G., King, J., Chisholm, SW. 2002Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategiesTrends Microbiol.10134142Google Scholar
  107. Vassilieva, EV., Stirewalt, VL., Jakobs, CU., Frigaard, NU., Inoue-Sakamoto, K., Baker, MA., Sotak, A., Bryant, DA. 2002Subcellular localization of chlorosome proteins in chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmXBiochemistry.4143584370Google Scholar
  108. Wang, XQ., Li, LN., Chang, WR., Zhang, JP., Gui, LL., Guo, BJ., Liang, DC. 2001Structure of C-phycocyanin from Spirulina platensis at 2.2 Å resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomesActa Crystallogr D Biol Crystallogr.57784792Google Scholar
  109. Wilk, KE., Harrop, SJ., Jankova, L., Edler, D., Keenan, G., Sharples, F., Hiller, RG., Curmi, PM. 1999Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolutionProc Natl Acad Sci USA.9689018906Google Scholar
  110. Xiong, J., Bauer, CE. 2002Complex evolution of photosynthesisAnnu Rev Plant Biol.53503521Google Scholar
  111. Yu, MH., Glazer, AN., Williams, RC. 1981Cyanobacterial phycobilisomes. phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomesJ Biol Chem.2561313013136Google Scholar
  112. Yusupov, MM., Yusupova, GZ., Baucom, A., Lieberman, K., Earnest, TN., Cate, JH., Noller, HF. 2001Crystal structure of the ribosome at 5.5 Å resolutionScience.292883896Google Scholar
  113. Zouni, A., Witt, HT., Kern, J., Fromme, P., Krauss, N., Saenger, W., Orth, P. 2001Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolutionNature.409739743Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemistry and Institute of Catalysis Science and TechnologyInstitute of TechnologyTechnionIsrael

Personalised recommendations