Advertisement

An economic feasibility assessment of autonomous field machinery in grain crop production

  • Jordan M. ShockleyEmail author
  • Carl R. Dillon
  • Scott A. Shearer
Article

Abstract

A multi-faceted whole farm planning model is developed to compare conventional and autonomous machinery for grain crop production under various benefit, farm size, suitable field day risk aversion, and grain price scenarios. Results suggest that autonomous machinery can be an economically viable alternative to conventional manned machinery if the establishment of intelligent controls is cost effective. An increase in net returns of 24% over operating with conventional machinery is found when including both input savings and a yield increase due to reduced compaction. This study also identifies the break-even investment price for intelligent controls for the safe and reliable commercialization of autonomous machinery. Results indicate that the break-even investment price is highly variable depending on the financial benefits resulting from the deployment of autonomous machinery, farm size, suitable field day risk aversion, and grain prices. The maximum break-even investment price for intelligent, autonomous controls is nearly US$500 000 for the median days suitable for fieldwork when including both input savings and a yield increase due to reduced compaction.

Keywords

Economics Mathematical programming Machinery selection Whole farm planning 

Notes

Acknowledgements

This research was partially funded by a USDA-CSREES Grant titled “Precision Agriculture: Development and Assessment of Integrated Practices for Kentucky Producers.” Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the US Department of Agriculture.

References

  1. Astrand, B., & Baerveldt, A. J. (2002). An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots, 13, 21–35.CrossRefGoogle Scholar
  2. Bak, T., & Jakobsen, H. (2004). Agricultural robotic platform with four wheel steering for weed detection. Biosystems Engineering, 87(2), 125–136.CrossRefGoogle Scholar
  3. Blackmore, B. S., & Blackmore, C. P. (2007). People, robots, and systemic decision making. In J. V. Stafford (Ed.), Proceedings of the 6th European conference on precision agriculture, Skiathos, Greece (pp. 433–439). Wageningen Academic Publishers.Google Scholar
  4. Blackmore, B. S., Fountas, S., & Have, H. (2004). System requirements for a small autonomous tractor. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development. Manuscript PM 04 001.Google Scholar
  5. Charnes, A., & Cooper, W. W. (1959). Chance constrained programming. Management Science, 6, 73–79.CrossRefGoogle Scholar
  6. Danok, A. B., McCarl, B. A., & White, T. K. (1980). Machinery selection modeling: Incorporation of weather variability. American Journal of Agricultural Economics, 62(4), 700–709.CrossRefGoogle Scholar
  7. Dillon, C. R. (1999). Production practice alternatives for income and suitable field day risk management. Journal of Agricultural and Applied Economics, 31(2), 247–261.CrossRefGoogle Scholar
  8. Goense, D. (2005). The economics of autonomous vehicles in agriculture. In Presented at the ASAE annual international meeting, Tampa, FL. Paper Number 051056.Google Scholar
  9. Gottschalk, R., Burgos-Artizzu, X. P., & Ribeiro, A. (2009). Development of a small agricultural field inspection vehicle. In Proceedings of the 7th European conference on precision agriculture, Wageningen, Netherlands, July 6–8 (pp. 877–884).Google Scholar
  10. Griepentrog, H. W., Andersen, N. A., Andersen, J. C., Blacke, M., Heinemann, O., Madsen, T. E., Nielsen, J., Pedersen, S. M., Ravn, O., & Wulfsohn, D. (2009). Safe and reliable: Further development of a field robot. In Proceedings of the 7th European conference on precision agriculture, Wageningen, Netherlands, July 6–8 (pp. 857–866).Google Scholar
  11. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.CrossRefGoogle Scholar
  12. Laughlin, D. H., & Spurlock, S. R. (2007). Mississippi State Budget Generator v6.0.Google Scholar
  13. Luck, J. D., Sharda, A., Pitla, S. K., Fulton, J. P., & Shearer, S. A. (2011). A case study concerning the effects of controller response and turning movement on application rate uniformity with a self-propelled sprayer. Transactions of the ASABE, 54(2), 423–431.CrossRefGoogle Scholar
  14. Marchant, J. A., Hague, T., & Tillett, N. D. (1997). Row-following accuracy of an autonomous vision-guided agricultural vehicle. Computers and Electronics in Agriculture, 16, 165–175.CrossRefGoogle Scholar
  15. Murdock, L. W., & James, J. (2008). Compaction, tillage method, and subsoiling effects on crop production. University of Kentucky Cooperative Extension Service Bulletin: AGR-197.Google Scholar
  16. Pedersen, S. M., Fountas, S., & Blackmore, S. (2007). Economic potential of robots for high value crops and landscape treatment. In J. V. Stafford (Ed.), Proceedings of the 6th European conference on precision agriculture, Skiathos, Greece (pp. 457–464). Wageningen Academic Publishers.Google Scholar
  17. Pedersen, S. M., Fountas, S., Have, H., & Blackmore, B. S. (2006). Agricultural robots—System analysis and economic feasibility. Precision Agriculture, 7, 295–308.CrossRefGoogle Scholar
  18. Pierce, J. S. (2018). Kentucky farm business management program: Annual summary data 2017. Lexington, KY: University of Kentucky Cooperative Extension Service.Google Scholar
  19. Pitla, S. K., Luck, J. D., & Shearer, S.A. (2010a). Low cost obstacle detection sensor array for unmanned agricultural vehicles. In Presented at the 2010 ASABE annual international meeting, Pittsburgh, PA Paper Number 1008702.Google Scholar
  20. Pitla, S. K., Luck, J. D., & Shearer, S.A. (2010b). Multi-robot system control architecture (MRSCA) for agricultural production. In Presented at the 2010 ASABE annual international meeting, Pittsburgh, PA. Paper Number 1008702.Google Scholar
  21. Ruckelshausen, A., Biber, P., Dorna, M., Gremmes, H., Klose, R., Linz, A., Rahe, R., Resch, R., Thiel, M., Trautz, D., & Weiss, U. (2009). BoniRob: An autonomous field robot platform for individual plant phenotyping. In Proceedings of the 7th European conference on precision agriculture, Wageningen, Netherlands, July 6–8 (pp. 841–847).Google Scholar
  22. Schieffer, J., & Dillon, C. R. (2015). The economic and environmental impacts of precision agriculture and interactions with agro-environmental policy. Precision Agriculture, 16(1), 46–61.CrossRefGoogle Scholar
  23. Shockley, J. M., & Dillon, C. R. (2018). An economic feasibility assessment for adoption of autonomous field machinery in row crop production. In Selected Paper prepared for presentation at the 2018 international conference on precision agriculture, Montreal, QC, June 24–26.Google Scholar
  24. Shockley, J. M., Dillon, C. R., & Stombaugh, T. (2011). A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. Journal of Agricultural and Applied Economics, 43(1), 57–75.CrossRefGoogle Scholar
  25. Shockley, J. M., Dillon, C. R., Stombaugh, T., & Shearer, S. (2012). Whole farm analysis of automatic section control for agricultural machinery. Precision Agriculture, 13(4), 411–420.CrossRefGoogle Scholar
  26. Shockley, J. M., & Mark, T. B. (2017). AEC-101: Days suitable for fieldwork in Kentucky. University of Kentucky Cooperative Extension Service. www.uky.edu/Ag/AgEcon/pubs/extSFW32.pdf.
  27. University of Kentucky Cooperative Extension Service Bulletins, 2008. AGR1, AGR129, AGR130, AGR132, ID139 Bulletins. http://dept.ca.uky.edu/agc/pub_area.asp?area=ANR.
  28. van Henten, E. J., van Asselt, C. J., Bakker, T., Blaauw, S. K., Govers, M. H. A. M., Hofstee, J. W., Jansen, R. M. C., Nieuwenhuizen, A. T., Speetjens, S. L., Stigter, J. D., van Straten, G., & van Willigenburg, L. G. (2009). WURking: A small sized autonomous robot for the farm of the future. In Proceedings of the 7th European conference on precision agriculture, Wageningen, Netherlands, July 6–8 (pp. 833–840).Google Scholar
  29. Vougioukas, S. (2007). Path tracking control for autonomous tractors with reactive obstacle avoidance based on evidence grids. In J. V. Stafford (Ed.), Proceedings of the 6th European Conference on Precision Agriculture, Skiathos, Greece (pp. 483–490). Wageningen Academic Publishers.Google Scholar
  30. Vougioukas, S. (2009). A framework for motion coordination of small teams of agricultural robots. In Proceedings of the 7th European conference on precision agriculture, Wageningen, Netherlands, July 6–8 (pp. 585–593).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jordan M. Shockley
    • 1
    Email author
  • Carl R. Dillon
    • 2
  • Scott A. Shearer
    • 3
  1. 1.Department of Agricultural EconomicsUniversity of KentuckyLexingtonUSA
  2. 2.Department of Agricultural EconomicsUniversity of KentuckyLexingtonUSA
  3. 3.Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations