Precision Agriculture

, Volume 18, Issue 3, pp 279–292 | Cite as

Autonomous field navigation, data acquisition and node location in wireless sensor networks

  • D. Reiser
  • D. S. Paraforos
  • M. T. Khan
  • H. W. Griepentrog
  • M. Vázquez-Arellano


To overcome the limited transmission range of spatially separated nodes of a wireless sensor network (WSN), a small 4-wheel autonomous robot assembled the data from nodes distributed in a vineyard. First, the robot followed a predefined way-point route between the grapevine rows, in order to evaluate the sensor node locations by their received signal strength indication (RSSI). Then, the recorded and geo-referenced RSSI data were analysed and mapped. By using the evaluated node positions, an optimised second route was generated. While navigating, a laser scanner was used for obstacle detection and avoidance. Path planning with known positions of the nodes reduced the driving time by 15 times compared with the first run, because the hybrid control system used was capable of navigating within the plantation even perpendicular to the row structures. For locating the nodes, results based on trilateration were compared with the values of an attached differential global navigation satellite system (DGNSS). The results showed that it is possible to locate and geo-reference the sensor nodes with a robot, even without any prior knowledge about their absolute position. The best achieved location showed a deviation with DGNSS of 1.2 m and with RSSI trilateration of 0.6 m compared to the actual position.


Spatial RSSI variation WSN Hybrid control Vineyard navigation Trilateration 



The project was conducted at the Max-Eyth Endowed Chair (Instrumentation & Test Engineering) at Hohenheim University (Stuttgart, Germany), which is partly grant funded by the Deutsche Landwirtschafts-Gesellschaft e.V. (DLG).


  1. Alippi, C., & Vanini, G. (2006). A RSSI-based and calibrated centralized localization technique for wireless sensor networks. Proceedings—Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops, 2006, 301–305. doi: 10.1109/PERCOMW.2006.13.CrossRefGoogle Scholar
  2. Alsindi, N., Duan, C., Zhang, J., & Tsuboi, T. (2009). NLOS Channel Identification and Mitigation in Ultra Wideband ToA-Based Wireless Sensor Networks. In: 6th Workshop on Positioning, Navigation and Communication (WPNC 2009), Hannover, (pp. 59–66). doi:  10.1109/WPNC.2009.4907804
  3. Anisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216–238. doi: 10.1007/s11119-014-9371-8.CrossRefGoogle Scholar
  4. Bhadauria, D., Tekdas, O., & Isler, V. (2011). Robotic data mules for collecting data over sparse sensor fields. Journal of Field Robotics, 28(3), 388–404. doi: 10.1002/rob.20384.CrossRefGoogle Scholar
  5. Caballero, F., Merino, L., Gil, P., Maza, I., & Ollero, A. (2008). A probabilistic framework for entire WSN localization using a mobile robot. Robotics and Autonomous Systems, 56(10), 798–806. doi: 10.1016/j.robot.2008.06.003.CrossRefGoogle Scholar
  6. Camilli, A., Cugnasca, C. E., Saraiva, A. M., Hirakawa, A. R., & Corrêa, P. L. P. (2007). From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture, 58(1), 25–36. doi: 10.1016/j.compag.2007.01.019.CrossRefGoogle Scholar
  7. Chrysikos, T., & Kotsopoulos, S. (2013). Site-specific Validation of Path Loss Models and Large-scale Fading Characterization for a Complex Urban Propagation Topology at 2.4 GHz. In: Proceedings of the Interntational MultiConference of Engineers and Computer Scientists 2013 Vol II, IMECS 2013, Hong Kong (pp. 585–590).Google Scholar
  8. Elnahrawy, E., Li, X., & Martin, R. P. (2004). The Limits of Localization Using Signal Strength: A Comparative Study. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON (pp 406–414). doi: 10.1109/SAHCN.2004.1381942
  9. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256. doi: 10.1109/JRPROC.1946.234568.CrossRefGoogle Scholar
  10. Griepentrog, H. W., Dühring Jaeger, C. L., & Paraforos, D. S. (2013). Robots for field operations with comprehensive multilayer control. KI - Künstliche Intelligenz, 27(4), 325–333. doi: 10.1007/s13218-013-0266-z.CrossRefGoogle Scholar
  11. Jakes, W. C. (1974). In W. Perkins (Ed.) Microwave mobile Communications. New York: Wiley.Google Scholar
  12. Jensen, K., Larsen, M., Nielsen, S., Larsen, L., Olsen, K., & Jørgensen, R. (2014). Towards an open software platform for field robots in precision agriculture. Robotics, 3(2), 207–234. doi: 10.3390/robotics3020207.CrossRefGoogle Scholar
  13. Kravchenko, A., & Bullock, D. G. (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal, 91, 393–400. doi: 10.2134/agronj1999.00021962009100030007x.CrossRefGoogle Scholar
  14. López, J. A., Garcia-Sanchez, A.-J., Soto, F., Iborra, A., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Design and validation of a wireless sensor network architecture for precision horticulture applications. Precision Agriculture, 12(2), 280–295. doi: 10.1007/s11119-010-9178-1.CrossRefGoogle Scholar
  15. Papamanthou, C., Preparata, F. P., & Tamassia, R. (2008). Algorithms for Location Estimation Based on RSSI Sampling. In: Algorithmic Aspects of Wireless Sensor Networks (pp 72–86) Berlin Heidelberg: Springer. doi:  10.1007/978-3-540-92862-1_7
  16. Park, D., Kwak, K., Kim, J., & Chung, W. K. (2015). Underwater Sensor Network using Received Signal Strength of Electromagnetic Waves. In IEEE International Conference on Intelligent Robots and Systems, Hamburg (pp. 1052–1057). doi:  10.1109/IROS.2015.7353500
  17. Savvides, A., Garber, W. L., Moses, R. L., Member, S., Srivastava, M. B., & Member, S. (2005). An analysis of error inducing parameters in multihop sensor node localization. IEEE Transactions on Mobile Computing, 4(6), 567–577. doi: 10.1109/TMC.2005.78.CrossRefGoogle Scholar
  18. Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In: IEEE International Conference on Mobile Ad hoc and Sensor Systems (pp. 174–183). doi: 10.1109/MAHSS.2004.1392104
  19. Vecchio, M., & López-Valcarce, R. (2014). Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. Journal of Network and Computer Applications, 48, 1–13. doi: 10.1016/j.jnca.2014.10.007.CrossRefGoogle Scholar
  20. Vougioukas, S., Anastassiu, H. T., Regen, C., & Zude, M. (2013). Influence of foliage on radio path losses (PLs) for wireless sensor network (WSN) planning in orchards. Biosystems Engineering, 114(4), 454–465. doi: 10.1016/j.biosystemseng.2012.08.011.CrossRefGoogle Scholar
  21. Wang, X., Yuan, S., Laur, R., & Lang, W. (2011). Dynamic localization based on spatial reasoning with RSSI in wireless sensor networks for transport logistics. Sensors and Actuators, A: Physical, 171(2), 421–428. doi: 10.1016/j.sna.2011.08.015.CrossRefGoogle Scholar
  22. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry—Recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14. doi: 10.1016/j.compag.2005.09.003.CrossRefGoogle Scholar
  23. Yang, X. G. X., Ming, M. C., & Wang, Y. (2015). A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precision Agriculture, 16, 180–200. doi: 10.1007/s11119-014-9369-2.CrossRefGoogle Scholar
  24. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330. doi: 10.1016/j.comnet.2008.04.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Agricultural EngineeringUniversity of HohenheimStuttgartGermany

Personalised recommendations