Precision Agriculture

, Volume 18, Issue 2, pp 169–191 | Cite as

Variable rate fertilization in citrus: a long term study

  • A. F. Colaço
  • J. P. MolinEmail author


Variable rate technology allows application of inputs according to the field spatial variability. Citrus fields can be significantly variable in either soil or plant aspects. Thus, variable rate fertilization seems to be an adequate approach to deal with this issue. However, its effects on input consumption, yield and other crop factors have not yet been assessed during long term experiments. The objective of this study was to evaluate the effects of variable rate fertilization on the input consumption, soil fertility and yield during a long term experiment in citrus. A strip experiment was established in two 25 ha citrus fields in São Paulo, Brazil, to compare variable rate against uniform rate fertilization. This experiment was carried out during 6 years. Variable rate prescriptions were based on soil and leaf grid sampling and on yield maps. Uniform applications were based on conventional soil sampling and average yield data. Variable rate treatment resulted in significant reduction in input consumption, but different soil fertility and yield responses were obtained by the variable rate in each field. Field 1 presented higher variability regarding soil and topography. Variable rate application resulted in a better soil fertility management and yield increase in this field. Field 2, which was less variable regarding soil and topography, got poorer results from variable rate treatment regarding soil fertility and yield response. Either way, variable rate technology resulted in higher fertilizer agronomic efficiency in both fields. N, P, and K fertilizers resulted in more fruit yield when applied site-specifically.


Site-specific management Input consumption Citrus yield Spatial variability 



We thank Citrosuco and Jacto companies for supporting this project and the São Paulo Research Foundation (FAPESP) for providing a scholarship to the first author (Grant 2011/05303-6).


  1. Aggelopoulou, K. D., Pateras, D., Fountas, S., Gemtos, T. A., & Nanos, G. D. (2011). Soil spatial variability and site-specific fertilization maps in an apple orchard. Precision Agriculture, 12, 118–129.CrossRefGoogle Scholar
  2. Bullock, D. S., Lowenberg-DeBoer, J., & Swinton, S. M. (2002). Adding value to spatial managed inputs by understanding site-specific yield response. Agricultural Economics, 27, 233–245.CrossRefGoogle Scholar
  3. Cambardella, C. A., Moorman, T. B., Novak, L. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field scale variability of soil properties in central Iowa, soils. Soil Science Society of America Journal, 58(5), 1501–1511.CrossRefGoogle Scholar
  4. Colaço, A. F., Rosa, H. J. D. A., & Molin, J. P. (2014). A model to analyze as-applied reports from variable rate applications. Precision Agriculture, 15(3), 304–320.CrossRefGoogle Scholar
  5. FAO (2015). Food and Agriculture Organization, Faostat. Accessed 8 Apr 2016.
  6. Farias, P. R. S., Nociti, L. A. S., Barbosa, J. C., & Perecin, D. (2003). Precision Agriculture: Mapping of yield citrus groves using geostatistics (Abstract in English). Revista Brasileira de Fruticultura, 25(2), 235–241.CrossRefGoogle Scholar
  7. Griffin, T. W., & Lowenberg-DeBoer, J. (2005). Worldwide adoption and profitability of precision agriculture: Implications for Brazil. Revista de Política Agrícola, 14(4), 20–38.Google Scholar
  8. Guo, W., Maas, J. S., & Bronson, K. F. (2012). Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precision Agriculture, 13, 678–692.CrossRefGoogle Scholar
  9. Kaspar, T. C., Colvin, T. S., Jaynes, D. B., Karlen, D. L., James, D. E., & Meek, D. W. (2003). Relationship between six years of corn yields and terrain attributes. Precision Agriculture, 4, 87–101.CrossRefGoogle Scholar
  10. Kumhálová, J., Kumhála, F., Kroulík, M., & Matejková, S. (2011). The impact of topography on soil properties and yield and the effects of weather conditions. Precision Agriculture, 12(6), 813–830.CrossRefGoogle Scholar
  11. Leão, M. G. A., Marques, J, Jr, de Souza, Z. M., & Pereira, G. T. (2010). Spatial variability of texture of a Latosol under cultivation of citrus (Abstract in English). Ciência e Agrotecnologia, 34(1), 121–131.CrossRefGoogle Scholar
  12. Liu, J., Pattey, E., Nolin, M., Miller, J. R., & Ka, O. (2008). Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity. Geoderma, 143, 261–272.CrossRefGoogle Scholar
  13. Molin, J. P., Colaço, A. F., Carlos, E. F., & de Mattos, D, Jr. (2012). Yield mapping, soil fertility and tree gaps in an orange orchard. Revista Brasileira de Fruticultura, 34(4), 1256–1265.CrossRefGoogle Scholar
  14. Molin, J. P., & Mascarin, L. S. (2007). Characterization of harvest systems and development yield mapping for citrus (Abstract in English). Engenharia Agrícola, 27(1), 259–266.CrossRefGoogle Scholar
  15. Molin, J. P., Motomiya, A. V. D. A., Frasson, F. R., Faulin, G. D. C., & Tosta, W. (2010). Test procedure for variable rate fertilizer in coffee. Acta Scientiarum Agronomy, 32(4), 569–575.CrossRefGoogle Scholar
  16. Officer, S. J., Kravchenko, A., Bollero, G. A., Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., et al. (2004). Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values. Plant and Soil, 258(1), 269–280.CrossRefGoogle Scholar
  17. Oliveira, P. C. G., Farias, P. R. S., Lima, H. V., Fernandes, A. R., Oliveira, F. A., & Pita, J. D. (2009). Spatial variability of soil chemical properties and yield of citrus orchards in eastern Amazonia (Abstract in English). Engenharia Agrícola e Ambiental, 13(6), 708–715.CrossRefGoogle Scholar
  18. Oliver, M. (2010). Geostatistical application for precision agriculture. New York: Springer.CrossRefGoogle Scholar
  19. Persson, A., Pilesjo, P., & Eklundh, L. (2005). Spatial influence of topographical factors on yield of potato (Solanum tuberosum L.) in Central Sweden. Precision Agriculture, 6, 341–357.CrossRefGoogle Scholar
  20. Ribeiro, Jr., P. J., & Diggle, P. J. (2007). geoR: Analysis of geostatistical data. R package version 1.7-5.1.
  21. Schumann, A. W., Miller, W. M., Zaman, Q. U., Hostler, K. H., Buchanon, S., & Cugati, S. (2006). Variable rate granular fertilization of citrus groves: Spreader performance with single-tree prescription zones. Applied Engineering in Agriculture, 22(1), 19–24.CrossRefGoogle Scholar
  22. Siqueira, D. S., Marques, J, Jr, & Pereira, G. T. (2010). The use of landforms to predict the variability of soil and orange attributes. Geoderma, 155, 55–66.CrossRefGoogle Scholar
  23. Stadler, A., Rudolph, S., Kupisch, M., Langensiepen, M., van der Kruk, J., & Ewert, F. (2015). Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European Journal of Agronomy, 64, 8–20.CrossRefGoogle Scholar
  24. Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: an application to viticulture. Precision Agriculture, 9, 101–113.CrossRefGoogle Scholar
  25. van Raij, B., Cantarela, H. Quaggio, J. A., Furlani, A. M. C. (1997). Lime and fertilization prescriptions for the São Paulo State (in Portuguese, “Recomendações de adubação e calagem para o Estado de São Paulo”). Technical book, Campinas, Brazil: IAC, 279p.Google Scholar
  26. Wei, J., & Salyani, M. (2004). Development of a laser scanner for measurement tree canopy characteristics: Phase 1. Prototype Development. Transactions of the ASAE, 47(6), 2101–2107.CrossRefGoogle Scholar
  27. Whitney, J. D., Miller, W., Wheaton, T., Salyani, M., & Schueller, J. K. (1999). Precision farming applications in Florida citrus. Applied Engineering in Agriculture, 15(5), 399–403.CrossRefGoogle Scholar
  28. Zaman, Q. U., & Schumann, A. W. (2005). Performance of an ultrasonic tree volume measurement system in commercial citrus groves. Precision Agriculture, 6, 467–480.CrossRefGoogle Scholar
  29. Zaman, Q. U., Schumann, A. W., & Miller, W. M. (2005). Variable rate nitrogen application in Florida citrus based on ultrasonically-sensed tree size. Applied Engineering in Agriculture, 21(3), 331–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Biosystems Engineering Department, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations