Precision Agriculture

, Volume 17, Issue 1, pp 93–107 | Cite as

Spatial distribution of Yellow Sigatoka Leaf Spot correlated with soil fertility and plant nutrition

  • A. S. Freitas
  • E. A. Pozza
  • M. C. AlvesEmail author
  • G. Coelho
  • H. S. Rocha
  • A. A. A. Pozza


This study analyzed the spatial distribution of Yellow Sigatoka Leaf Spot relative to soil fertility and plant nutritional status using geostatistics. The experimental area comprised 1.2 ha, where 27 points were georeferenced and spaced on a regular grid 18 × 18 m. The severity of Yellow Sigatoka, soil fertility and plant nutritional status were evaluated at each point. The spherical model was adjusted for all variables using restricted maximum likelihood. Kriging maps showed the highest infection rate of Sigatoka occurred in high areas of the field which had the highest concentration of sand, while the lowest disease was found in lower areas with lower silt, organic matter, total exchangeable bases, effective cation exchange capacity, base saturation, Ca and Mg in soil, and foliar sulfur (S). These results may help farmers manage Yellow Sigatoka disease more effectively, with balanced fertilization and reduced fungicide application. This practice minimizes the environmental impact and cost of production while contributing to production sustainability.


Banana Geostatistics Mineral nutrition Mycosphaerella musicola 



The National Council for Scientific and Technological Development—CNPq provided the Master’s scholarship and the Foundation for Research Support of the State of Minas Gerais (FAPEMIG) funded the Project.


  1. Alves, M. C., Pozza, E. A., Machado, J. C., Araújo, D. V., Talamini, V., & Oliveira, M. S. (2006). Geoestatistics as methodology to study the space-time dynamics of diseases transmitted by seed-borne Colletotrichum spp. Fitopatologia Brasileira, 31(6), 557–563.CrossRefGoogle Scholar
  2. Alves, M. C., Pozza, E. A., Silva, F. M., Oliveira, M. S., Carvalho, L. G., & Sanches, L. (2012). Geoestatística na proteção de plantas: geoinformação do pesquisador ao produtor. Simpósio avanços na otimização do uso de defensivos agrícolas no manejo fitossanitário, 12, 283–302.Google Scholar
  3. Alves, M. C., Silva, F. M., Moraes, J. C., Pozza, E. A., Oliveira, M. S., Souza, J. C., & Alves, L. S. (2011). Geostatistical analysis of the spatial variation of the berry borer and leaf miner in a coffee agroecosystem. Precision Agriculture, 12(1), 18–31.CrossRefGoogle Scholar
  4. Alves, M. C., Silva, F. M., Pozza, E. A., & Oliveira, M. S. (2009). Modeling spatial variability and pattern of rust and brown eye spot in coffee agroecosystem. Journal of Pest Science, 82(2), 137–148.CrossRefGoogle Scholar
  5. Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems. New York: Oxford University Press.Google Scholar
  6. Castelan, F. P., Abadie, C., Hubert, O., Chilin-Charles, Y., De Bellaire, L. L., & Chillet, M. (2013). Relation between the severity of Sigatoka disease and banana quality characterized by pomological traits and fruit green life. Crop Protection, 50, 61–65.CrossRefGoogle Scholar
  7. Cavalcante, E. G. S., Alves, M. C., Pereira, G. T., & Souza, Z. D. (2007). Spatial variability of MO, P, K and CTC of soil under different use and management conditions. Ciência Rural, 37(2), 394–400.CrossRefGoogle Scholar
  8. Cordeiro, Z. J. M., & Matos, A. P. (2005). Expression of resistance of banana varieties to yellow Sigatoka. Fitopatologia Brasileira, 30(5), 534–535.CrossRefGoogle Scholar
  9. Diggle, P. J., & Ribeiro, P. J, Jr. (2007). Model-based geostatistics. New York: Springer.Google Scholar
  10. Faostat (2014). Food and Agriculture Organization of the United Nations. Retrieved from 23 Sep 2014.
  11. Furtini Neto, A. E., Vale, F. R., Guilherme, L. R. G., & Guedes, G. A. A. (2001). Fertilidade do solo e nutrição de plantas no agronegócio. Lavras: UFLA/FAEPE.Google Scholar
  12. Garcia Júnior, D., Pozza, E. A., Pozza, A. A., Souza, P. E., Carvalho, J. G., & Balieiro, A. C. (2003). Incidence and severity of the brown eye spot of coffee according to supply of potassium and calcium in nutrient solution. Fitopatologia Brasileira, 28(3), 286–291.CrossRefGoogle Scholar
  13. Gauhl, F. (1994). Epidemiology and Ecology of Black Sigatoka (Mycosphaerella fijiensis Morelet) on Plantain nad banana (Musa spp) in Costa Rica, Central América. Montpellier: INIBAP.Google Scholar
  14. Gerald, S. F., White, S. D., Dickinson, A. A., & Goldman, B. (2003). A survey of Sigatoka leaf disease (Mycosphaerella musicola Leach) of banana and soil calcium levels in North Queensland. Animal Production Science, 43(9), 1157–1161.CrossRefGoogle Scholar
  15. Haneklaus, S., Bloem, E., & Schnug, E. (2007). Sulfur and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 101–118). Saint Paul: The American Phytopathological Society.Google Scholar
  16. Huber, D. M., & Jones, J. B. (2013). The role of magnesium in plant disease. Plant and Soil, 368(1–2), 73–85.CrossRefGoogle Scholar
  17. Huber, D., Römheld, V., & Weinmann, M. (2012). Relationship between nutrition, plant diseases and pests. In H. Marschner (Ed.), Mineral Nutrition of Higher Plants (3rd ed., pp. 283–298). San Diego: Academic Press.CrossRefGoogle Scholar
  18. Jaime-Garcia, R., Orum, T. V., Felix-Gastelum, R., Trinidad-Correa, R., Vanetten, H. D., & Nelson, M. R. (2001). Spatial analysis of Phytophthora infestans genotypes and late blight severity on tomato and potato in the Del Fuerte Valley using geostatistics and geographic information systems. Phytopathology, 91(12), 1156–1165.PubMedCrossRefGoogle Scholar
  19. Klikocka, H. (2009). Influence of NPK fertilization enriched with S, Mg, and micronutrients contained in liquid fertilizer Insol 7 on potato tubers yield (Solanum tuberosum L.) and infestation of tubers with Streptomyces scabies and Rhizoctonia solani. Journal of Elementology, 14(2), 271–288.Google Scholar
  20. Klikocka, H., Haneklaus, S., Bloem, E., & Schnug, E. (2005). Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies. Journal of Plant Nutrition, 28(5), 819–833.CrossRefGoogle Scholar
  21. Lamichhane, J. R., Fabi, A., Ridolfi, R., & Varvaro, L. (2013). Epidemiological study of Hazelnut bacterial blight in Central Italy by using laboratory analysis and geostatistics. PLoS One, 8(2), 1–14.CrossRefGoogle Scholar
  22. Li, B. N., Cao, R., Chen, L., Zhou, Y., Duan, X., Luo, Y., et al. (2013). Application of geographic information systems to Identify the oversummering regions of Blumeria graminis f. sp. tritici in China. Plant Disease, 97(9), 1168–1174.CrossRefGoogle Scholar
  23. Lima, L. M. D., Pozza, E. A., Torres, H. N., Pozza, A. A., Salgado, M., & Pfenning, L. H. (2010). Relationship between nitrogen/potassium with Phoma spot and nutrition of coffee seedlings cultivated in nutrient solution. Tropical Plant Pathology, 35(4), 223–228.Google Scholar
  24. Marschner, H. (2012). Mineral nutrition of higher plants (3rd ed., p. 643). San Diego: Academic Press.Google Scholar
  25. Martinez, H. E. P., Carvalho, J. G., & Souza, R. B. (1999). Diagnose foliar. In A. C. Ribeiro, P. T. G. Guimarães, & V. V. H. Alvarez (Eds.), Recomendações para uso de corretivos e fertilizantes em Minas Gerais. 5ª aproximação (pp. 143–168). Viçosa: CFSEMG.Google Scholar
  26. Mcbratney, A. B., & Webster, R. (1983). How many observations are needed for regional estimation of soil properties? Soil Science, Baltimore, 135(3), 177–183.CrossRefGoogle Scholar
  27. McBratney, A. B., & Webster, R. (1986). Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Journal Soil Science, 37(4), 617–639.CrossRefGoogle Scholar
  28. Mohamed, Z., Abdlatif, I., Abdullah, A. M., & Yahia, E. M. (2011). Economic importance of tropical and subtropical fruits. Postharvest biology and technology of tropical and subtropical fruits, 1, 1–20.CrossRefGoogle Scholar
  29. Mondal, S. N., & Timmer, L. W. (2003). Effect of urea, CaCO3, and dolomite on pseudothecial development and ascospore production of Mycosphaerella citri. Plant Disease, 87(5), 478–483.CrossRefGoogle Scholar
  30. Olea, R. A. (2003). Geostatistics for engineers and earth scientists. Norwell: Kluwer Academic Publishers.Google Scholar
  31. Pardo-Igúzquiza, E. (1998). Inference of spatial indicator covariance parameters by maximum likelihood using MLREML. Computers & Geosciences, 24(5), 453–464.CrossRefGoogle Scholar
  32. Pinheiro, J. B., Pozza, E. A., Pozza, A. A. A., Moreira, A. S., & Alves, M. C. (2011). Effect of potassium and calcium supplied via nutrient solution on the severity of Asian soybean rust. Revista Ceres, 58(1), 43–50.CrossRefGoogle Scholar
  33. Pinheiro, J. B., Pozza, E. A., Pozza, A. A. A., Moreira, A. S., Alves, M. D. C., & Campos, V. P. (2008). Influence of mineral nutrition on the spatial distribution of soybean cyst nematode. Nematologia Brasileira, 32(4), 270–278.Google Scholar
  34. Rahman, M., & Punja, Z. K. (2007). Calcium and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 79–93). Saint Paul: The American Phytopathological Society.Google Scholar
  35. Rocha, H. S., Pozza, E. A., Uchôa, C. D. N., Cordeiro, Z. J. M., Souza, P. E., Sussel, Â. A. B., & Rezende, C. A. (2012). Temporal Progress of Yellow Sigatoka and Aerobiology of Mycosphaerella musicola Spores. Journal of Phytopathology, 160(6), 277–285.CrossRefGoogle Scholar
  36. Salac, I., Haneklaus, S. H., Bloem, E., Booth, E. J., Sutherland, K. G., Walker, K. C., & Schnug, E. (2005). Sulfur nutrition and its significance for crop resistance: a case study from Scotland. Landbauforschung Volkenrode, 283, 111–119.Google Scholar
  37. Serrano, M. S., Fernández-Rebollo, P., Vita, P., & Sánchez, M. E. (2013). Calcium mineral nutrition increases the tolerance of Quercus ilex to Phytophthora root disease affecting oak rangeland ecosystems in Spain. Agroforestry Systems, 87(1), 173–179.CrossRefGoogle Scholar
  38. Silva, J. T. A., Borges, A. L., Dias, M. S. C., Costa, E. L., & Prudêncio, J. M. (2002). Diagnóstico nutricional da bananeira prata anã para o norte de Minas (p. 16). Belo Horizonte: EPAMIG. (Boletim Técnico, 70).Google Scholar
  39. Silva, J. T. A., Borges, A. L., & Malburg, J. L. (1999). Solos, adubação e nutrição da bananeira. Informe agropecuário, Belo Horizonte, 20(196), 21–36.Google Scholar
  40. Silva, J. T. A., Pacheco, D. D., & Costa, É. L. (2007). Chemical and physical properties of soil cultivated with dwarf prata banana tree (aab), in three levels of productivity, in the north of minas gerais. Revista Brasileira de Fruticultura, 29(1), 102–106.CrossRefGoogle Scholar
  41. Stover, R. H. (1972). Banana, Plantain and Abaca Diseases. Kew: Commonwealth Mycological Institute.Google Scholar
  42. Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5th ed., p. 918). Porto Alegre: Artmed.Google Scholar
  43. Uchôa, C. N., Pozza, E. A., Pozza, A. A. A., & Moraes, W. S. (2011). Geostatistical modeling of black-sigatoka and relation to soil fertility. Bioscience Journal, 27(3), 357–362.Google Scholar
  44. Wardlaw, C. W. (1961). Leaf spot (Sigatoka Disease). In C. W. Wardlaw (Ed.), Banana Diseases: Including Plantains and Abaca (Vol. 11, pp. 314–341). Edingburgh: Longman.Google Scholar
  45. Webster, R., & Oliver, M. (2007). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43, 177–192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. S. Freitas
    • 1
  • E. A. Pozza
    • 1
  • M. C. Alves
    • 2
    Email author
  • G. Coelho
    • 2
  • H. S. Rocha
    • 3
  • A. A. A. Pozza
    • 4
  1. 1.Plant Pathology DepartmentFederal University of LavrasLavrasBrazil
  2. 2.Engineering DepartmentFederal University of LavrasLavrasBrazil
  3. 3.Embrapa Cassava and FruitsCruz das AlmasBrazil
  4. 4.Department of Soil ScienceFederal University of LavrasLavrasBrazil

Personalised recommendations