Advertisement

Precision Agriculture

, Volume 16, Issue 2, pp 216–238 | Cite as

A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture

  • Mohammad Hossein Anisi
  • Gaddafi Abdul-Salaam
  • Abdul Hanan Abdullah
Article

Abstract

Precision agriculture (PA) is the use of information and communication technology together with best agricultural practices for farm management. PA requires the acquisition, transmission and processing of large amounts of data from farm fields. A wireless sensor network (WSN) is a system for monitoring agriculture fields. Several researchers have used WSNs to collect the required data from the regions of interest for their intended usages in various applications. In a WSN, the energy consumption of the sensor nodes is the main issue, due to its direct impact on the lifetime of the network. Many approaches have been proposed to address this issue using different power sources and types of nodes. Specifically, in PA, because of the extended time period that is required to monitor fields, using an appropriate WSN approach is important. There is a need for a comprehensive review of WSN approaches for PA. The aim of this paper is to classify and describe the state-of-the-art of WSNs and analyze their energy consumption based on their power sources. WSN approaches in PA are categorized and discussed according to their features.

Keywords

Wireless sensor networks Energy consumption Topologies Power source 

Abbreviations

AG

Above ground

BS

Base station

CP

Center pivot

ET

Evaporation–transpiration

FW

Full-wave

GW

Gateway

GPRS

General packet radio service

GPS

Global positioning system

IMS

Irrigation management system

iPAGAT

Intelligent precision agriculture gateway

IS

Irrigation station

ISSPA

Integrated wireless sensor networks solution for PA

KIP-AF

Knowledge information processor for agriculture sensor data and fire-sensor data

LNA

Low noise amplifier

LOFAR

Low frequency array

LOS

Line of sight

LQI

Line quality indicator

MAC

Medium access control

PA

Precision agriculture

PC

Personal computer

PHP

Hypertext preprocessor

RF

Radio frequency

RFID

Radio-frequency identification

RMS

Remote monitoring station

RSSI

Received signal strength indicator

RTAS

Real-time alert system

RTK-DGPS

Real-time kinematic differential global positioning system

SEA

Single ended elliptical antenna

SIM

Subscriber identity model

T-MAC

Time-out medium access control

TDMA

Time division multiple access

TinyOS

Tiny operation system

UG

Underground

VRI

Variable rate irrigation

WC

Wireless co-ordinator

WED

Wireless end device

WSN

Wireless sensor networks

WR

Wireless router

WUSN

Wireless underground sensor networks

XML

Extensible mark-up language

ZC

ZigBee co-ordinator

ZED

ZigBee end device

ZSIM

ZigBee enabled SIM

References

  1. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.CrossRefGoogle Scholar
  2. Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013a). EDR: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12, 46–55.CrossRefGoogle Scholar
  3. Anisi, M. H., Abdullah, A. H., & Razak, S. A. (2013b). Energy-efficient and reliable data delivery in wireless sensor networks. Wireless Networks, 19, 495–505.CrossRefGoogle Scholar
  4. Baggio, A., 2005. Wireless sensor networks in precision agriculture, In: A. Dunkels, B. Ahlgren, P. Gunningberg, S. Janson, C. Rohner and T. Voigt (Eds.), ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005). ACM, New York, NY, USA, pp. 1-2.Google Scholar
  5. Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30, 1655–1695.CrossRefGoogle Scholar
  6. Can, Z., & Demirbas, M. (2013). A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Networks, 11, 596–610.CrossRefGoogle Scholar
  7. Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. (2013). Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture, 96, 13–22.CrossRefGoogle Scholar
  8. I.C.S.L.M.S. Committee (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11.Google Scholar
  9. Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76, 252–265.CrossRefGoogle Scholar
  10. Dong, X., Vuran, M. C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11, 1975–1987.CrossRefGoogle Scholar
  11. Dubey, V., Dubey, N., & Chouhan, S. S. (2011). Wireless sensor network based remote irrigation control system and automation using DTMF code. In G. Tomar, A. Abraham, D. Bhatnagar, & A. Pandit (Eds.), IEEE international conference on communication systems and network technologies (CSNT) (pp. 34–37). Piscataway, NJ.Google Scholar
  12. Dubois-Ferrière, H., Fabre, L., Meier, R., & Metrailler, P., (2006). TinyNode: A comprehensive platform for wireless sensor network applications. In J. Stankovic, P. Gibbons, S. Wicker & J. Paradiso (Eds.), Proceedings of the 5th international conference on Information processing in sensor networks (pp. 358-365). New York, NY: ACM.Google Scholar
  13. Fernandes, M. A., Matos, S. G., Peres, E., Cunha, C. R., López, J. A., Ferreira, P., et al. (2013). A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 95, 19–30.CrossRefGoogle Scholar
  14. Gao, L., Zhang, M., & Chen, G. (2013). An Intelligent irrigation system based on wireless sensor network and fuzzy control. Journal of Networks, 8, 1080–1087.Google Scholar
  15. Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75, 288–303.CrossRefGoogle Scholar
  16. Hedley, C., Ekanayake, J., Roudier, P. (2012). Wireless soil moisture sensor networks for precision irrigation scheduling. In L. D. Currie & C. L. Christensen (Eds.), Workshop abstracts, advanced nutrient management: Gains from the past-goals for the future. (p. 85), New Zealand: Massey University.Google Scholar
  17. Hou, J., Li, N., Stojmenovic, I., (2005). Topology construction and maintenance in wireless sensor networks. Handbook of sensor networks: Algorithms and architectures (pp. 311-341). New York, NY: Wiley.Google Scholar
  18. Kim, Y.-D., Yang, Y.-M., Kang, W.-S., & Kim, D.-K. (2011). On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Computer Standards & Interfaces, 36, 288–299.CrossRefGoogle Scholar
  19. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., et al. (2005). TinyOS: An operating system for sensor networks. In W. Weber, J. Rabaey, & E. Aarts (Eds.), Ambient intelligence (pp. 115–148). Berlin: Springer.CrossRefGoogle Scholar
  20. Mafuta, M., Zennaro, M., Bagula, A., Ault, G., Gombachika, H., & Chadza, T. (2013). Successful deployment of a wireless sensor network for precision agriculture in Malawi. International Journal of Distributed Sensor Networks, 2013, 1–13.CrossRefGoogle Scholar
  21. Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.CrossRefGoogle Scholar
  22. Mhatre, V., Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: a comparative study, In: H. Sari (Ed.), IEEE international conference on communications (IEEE ICC), (pp. 3646–3651). Piscataway, NJ.Google Scholar
  23. Mogul, J. C., Douglis, F., Feldmann, A., & Krishnamurthy, B. (1997). Potential benefits of delta encoding and data compression for HTTP. In M. Steenstrup (Ed.), Proceeding of the ACM SIGCOMM’97 conference on applications, technologies, architectures, and protocols for computer communication (pp. 181–194). New York, NY: ACM.Google Scholar
  24. Nesa Sudha, M., Valarmathi, M., & Babu, A. S. (2011). Energy efficient data transmission in automatic irrigation system using wireless sensor networks. Computers and Electronics in Agriculture, 78, 215–221.CrossRefGoogle Scholar
  25. Owojaiye, G., & Sun, Y. (2012). Focal design issues affecting the deployment of wireless sensor networks for pipeline monitoring. Ad Hoc Networks, 11, 1237–1253.CrossRefGoogle Scholar
  26. Park, C., Lahiri, K., & Raghunathan, A. (2005). Battery discharge characteristics of wireless sensor nodes: An experimental analysis. In E. Belding-Royer, M. Krunz & T. Nandagopal (Eds.), IEEE international conference on sensing, communication and networking (IEEE SECON) (pp. 20–21). Piscataway, NJ.Google Scholar
  27. Peng, X. & Liu, G. (2012). Intelligent water-saving irrigation system based on fuzzy control and wireless sensor NETWORK. In X. Luo, Z. Luo, L. M. Ni & R. Wang (Eds.), Fourth IEEE international conference on digital home (ICDH) (pp. 252–256). Piscataway, NJ.Google Scholar
  28. Peplinski, N. R., Ulaby, F. T., & Dobson, M. C. (1995). Dielectric properties of soils in the 0.3–1.3 GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33, 803–807.CrossRefGoogle Scholar
  29. Peres, E., Fernandes, M. A., Morais, R., Cunha, C. R., López, J. A., Matos, S. R., et al. (2011). An autonomous intelligent gateway infrastructure for in-field processing in precision viticulture. Computers and Electronics in Agriculture, 78, 176–187.CrossRefGoogle Scholar
  30. Pozar, D. M. (2000). Microwave and RF design of wireless systems. New York, NY: Wiley.Google Scholar
  31. Rathnayaka, A., & Potdar, V. M. (2013). Wireless sensor network transport protocol: A critical review. Journal of Network and Computer Applications, 36, 134–146.CrossRefGoogle Scholar
  32. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors, 9, 4728–4750.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic, J., & Young, D. (2007). Luster: Wireless sensor network for environmental research. In S. Jha (Ed.), Proceedings of the 5th international conference on embedded networked sensor systems (SenSys) (pp. 103–116). New York, NY: ACM.Google Scholar
  34. Senturk, I. F., & Akkaya, K. (2014). Mobile data collector assignment and scheduling for minimizing data delay in partitioned wireless sensor networks. In P. Bellavista, A. Mellouk & M. H. sherif (Eds.), Proceeding of the 5th international conference on ad hoc networks (ADHOCNETS) (pp. 15–31). Heidelberg: Springer.Google Scholar
  35. Shaikh, Z., Yousuf, H., Nawaz, F., Kirmani, M., & Kiran, S. (2010). Crop irrigation control using wireless sensor and actuator network (WSAN). In IEEE International conference on information and emerging technologies (ICIET) (pp. 1–5). Red Hook, NY.Google Scholar
  36. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2014). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production. doi: 10.1016/j.jclepro.2014.04.036.
  37. Stankovic, J. A. (2008). When sensor and actuator networks cover the world. ETRI Journal, 30, 627–633.CrossRefGoogle Scholar
  38. Theodoridis, E., Chatzigiannakis, I., & Dulman, S. (2012). Post-processing in wireless sensor networks: Benchmarking sensor trace files for in-network data aggregation. Journal of Network and Computer Applications, 35, 548–561.CrossRefGoogle Scholar
  39. Tongtong, Y., Wenjie, F., & Zheying, L. (2011). Temperature and humidity wireless sensing and monitoring systems applied in greenhouse. In J. Wang (Ed.), IEEE International conference on computer science and network technology (ICCSNT) (pp. 857–861). Red Hook, NY.Google Scholar
  40. Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In I. F. Akyildiz, D. Estrin, D. E. Culler & M. B. Srivastava (Eds.), Proceedings of the 1st international conference on embedded networked sensor systems (SenSys) (pp. 171–180). New York, NY: ACM.Google Scholar
  41. Van Hoesel, L., TüYsüZ Erman, A., Dilo, A., & Havinga, P. J. (2013). Geo-casting of queries combined with coverage area reporting for wireless sensor networks. Ad Hoc Networks, 11, 104–123.CrossRefGoogle Scholar
  42. Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61, 44–50.CrossRefGoogle Scholar
  43. Vellidis, G., Tucker, M., Perry, C., Reckford, D., Butts, C., Henry, H., Liakos, V., Hill, R. W., & Edwards, W. (2013). A soil moisture sensor-based variable rate irrigation scheduling system. In J.V. Stafford (Ed.), Precision Agriculture 2013—Proceedings of the 9th European conference on precision agriculture (9ECPA) (pp. 713–720). The Netherland: Wageningen Academic Publishers.Google Scholar
  44. Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transactions on Sensor Networks (TOSN), 5, 9.CrossRefGoogle Scholar
  45. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry—recent development and future perspective. Computers and Electronics in Agriculture, 50, 1–14.CrossRefGoogle Scholar
  46. Watras, C., Morrow, M., Morrison, K., Scannell, S., Yaziciaglu, S., Read, J., et al. (2014). Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results. Environmental Monitoring and Assessment, 186, 919–934.CrossRefPubMedGoogle Scholar
  47. Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., & Stankovic, J. (2006). ALARM-NET: Wireless sensor networks for assisted-living and residential monitoring. University of Virginia Computer Science Department Technical Report 2, VA.Google Scholar
  48. Xu, Z., Lou, B., & Shao, G. (2012). An intelligent irrigation system for greenhouse jonquil based on ZigBee wireless sensor networks. Internet of things. (pp. 200–207). Berlin Heidelberg: Springer.Google Scholar
  49. Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35, 59–64.CrossRefGoogle Scholar
  50. Zhang, R.-B., Guo, J.-J., Zhang, L., Zhang, Y.-C., Wang, L.-H., & Wang, Q. (2011). A calibration method of detecting soil water content based on the information-sharing in wireless sensor network. Computers and Electronics in Agriculture, 76, 161–168.CrossRefGoogle Scholar
  51. Zhang, M., Li, M., Wang, W., Liu, C., & Gao, H. (2012). Temporal and spatial variability of soil moisture based on WSN. Mathematical and Computer Modelling, 58, 826–833.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohammad Hossein Anisi
    • 1
  • Gaddafi Abdul-Salaam
    • 2
  • Abdul Hanan Abdullah
    • 2
  1. 1.Department of Computer System and Technology, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of ComputingUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations