Advertisement

Precision Agriculture

, Volume 14, Issue 3, pp 270–289 | Cite as

Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre

  • F. A. RodriguesJr.
  • P. S. G. Magalhães
  • H. C. J. Franco
Article

Abstract

The area of sugar cane production in Brazil has substantially increased in the last few years due to the high demand for ethanol. It is estimated that the actual area, which is approximately 8 Mha, will increase to as much as 15 Mha in the next 10 years. In addition to enlarging the boundaries and installing new industrial units, sugar cane expansion demands better use of production areas and improvement of both yield and quality, combined with a reduction of production costs. Thus, models that can describe the behaviour of sugar cane quality parameters could be important in understanding the effects of soil and plant attributes on these parameters. The objective of this work was to fit mathematical models to the sugar cane Brix, pol and fibre parameters using physical soil attributes, chemical soil attributes and leaf nitrogen as predictors from the previous year. This work was carried out in an area of 10 ha located in Araras, SP, Brazil, from November 2008 until July 2011 in the first (plant cane), second (first ratoon) and third (second ratoon) cycles of the crop. The chemical soil attributes analysed were the macronutrients and micronutrients, and the soil physical attribute analysed was the soil texture. The variables used in the models were chosen using principal component analysis (PCA), and the fit of the models was made as the mean of multiple regressions. The results were compared using kriging to map the Brix, pol and fibre with the true and estimated values. The Brix, pol and fibre models presented R 2 values of 0.17, 0.06 and 0.18, respectively, for the first ratoon of the crop and 0.23, 0.19 and 0.52, respectively, for the second ratoon. These results allowed the estimation of Brix, pol and fibre with estimation errors less than 1 % for the first and second ratoons. The PCA approach identified soil organic matter, phosphorus and potassium as the soil attributes that had the higher variance of the dataset during the years studied.

Keywords

Principal component analysis Multiple regression Brix, pol and fibre modelling 

Notes

Acknowledgments

The authors are very grateful to São João mill that made the area available and allowed the necessary alterations on their sugar cane harvester, giving the necessary support and cooperation during the initial field tests. This project is funded by FAPESP (State of São Paulo Research Foundation), FINEP (Brazilian Agency of Innovation) and CNPq (National Research Council) who provide the scholarship for the first author.

References

  1. Alvarez, R., Wutke, A. C. P., Arruda, H. V., van Raij, B., Gomes, A. C., & Zink, F. (1991). Adubação da cana-de-acúcar: XIV. Adubação NPK em latossolo roxo. (Sugar cane fertilization: XIV. NPK in Oxisol). Bragantia, 50, 359–374.CrossRefGoogle Scholar
  2. Aquino, A. B., Aquino, B. F., Hernandez, F. F. F., Holanda, F. J. M., Freire, J. M., Crisóstomo, L. A., Costa, R. I., Uchôa, S. C. P., & Fernandes, V. L. B. (1993). Recomendações de adubação e calagem para o estado do Ceará. (Recommendations of fertilizers and lime application for Ceará State). Fortaleza, CE: University Press.Google Scholar
  3. Bayer, C., & Mielniczuk, J. (2008). Dinâmica e função da material orgânica. (Dynamic and function of the organic matter). In G. A. Santos, L. S. Silva, L. P. Canellas, F. A. O. Camargo (Eds.), Fundamentos da matéria orgânica do solo (pp. 02–18). Porto Alegre, RS: Ed. Metrópole.Google Scholar
  4. Beauclair, E. G. F. (1991). Relações entre algumas propriedades químicas do solo e a produtividade da cana-de-açúcar (Saccharum spp.), através de regressão linear múltipla. (Relationship among some chemical soil attributes and sugar cane (Saccharum spp.) yield by means of multiple regression). Escola Superior de Agricultura “Luiz de Queiroz”. Master Dissertation, Universidade de São Paulo, Piracicaba, Brazil, p. 90.Google Scholar
  5. Bernoux, M. M. Y., Arrouays, D., Cerri, C. C., & Bourennane, H. (1998a). Modeling vertical distribution of carbon in Oxisols of the western Brazilian Amazon. Soil Science, 163, 941–951.CrossRefGoogle Scholar
  6. Bernoux, M. M. Y., Arrouays, D., Cerri, C.C., Graça, P.M.de A., Volkoff, B., & Trichet, J. (1998b). Estimation des stocks de carbone des sols du Rondônia (Amazonie brésilienne). (Estimation of carbon stock from Rondônia soils (Brazilian Amazone). Études et gestion des sols, 5(1), 31–42.Google Scholar
  7. Boote, K. J., Jones, J. W., & Pickering, N. B. (1996). Potential uses and limitations of crop model. Agronomy Journal, 88, 704–716.CrossRefGoogle Scholar
  8. Bowerman, B. L., O’Connell, R. T., & Koehler, A. B. (2004). Forecasting, time series and regression: an applied approach. Belmont, CA: Thomson Brooks/Cole.Google Scholar
  9. Bragato, G., & Primavera, F. (1998). Manuring and soil type influence on spatial variation of soil organic matter properties. Soil Science Society of America Journal, 62, 1313–1319.CrossRefGoogle Scholar
  10. Bramley, R. G. V. (2005). Understanding variability in winegrape production systems—2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42.CrossRefGoogle Scholar
  11. Bramley, R. G. V., & White, R. E. (1991). An analysis of variability in the activity of nitrifiers in a soil under pasture. II. Some problems encountered in the geostatistical analysis of biological soil properties. Australian Journal of Soil Research, 29, 109–122.CrossRefGoogle Scholar
  12. Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., Martins, E. D. S., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160(2), 131–142.CrossRefGoogle Scholar
  13. Burke, I. C., Lauenroth, W. K., Riggle, R., Brannen, P., Madigan, B., & Beard, S. (1999). Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant. Ecosystems, 2, 422–438.CrossRefGoogle Scholar
  14. Cambardella, C. A., Moorman, T. B., Novack, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society America Journal, 58, 1240–1248.CrossRefGoogle Scholar
  15. Cantarella, H., & Rossetto, R. (2010). Fertilizers for sugar cane. In L. A. B. Cortez (Ed.), Sugarcane bioethanol (pp. 405–422). São Paulo, Brazil: Fapesp—Editora Blucher.Google Scholar
  16. Cerri, D. G. P., & Magalhaes, P. S. G. (2012). Correlation of soil physical and chemical attributes and sugar cane yield. Pesquisa Agropecuária Brasileira, 47(4), 613–620.CrossRefGoogle Scholar
  17. CONAB—National Company for Food Supply. (2011). Brazilian crop assessment sugar cane crop 2010/2011—3rd estimate. Retrieved October, 2012 from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_12_08_11_00_54_08.pdf.
  18. CONSECANA—Conselho dos Produtores de Cana-de-Açúcar, Açúcar e Álcool do Estado de São Paulo. (2006). Manual de Instruções. (Instructions manual) (5th ed.). Piracicaba, SP: Conselho dos Produtores de Cana-de-Açúcar.Google Scholar
  19. Dias, F. L. F., Mazza, J. A., Matsioka, S., Perecin, D., & Maule, R. F. (1999). Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do estado de São Paulo. (Sugar cane yield in relation with clime and soils from São Paulo northeast region). Revista Brasileira de Ciência do Solo, 23, 627–637.Google Scholar
  20. EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. (1997). Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. (Manual of soil analysis methods) (2nd ed.). Rio de Janeiro, RJ: EMBRAPA.Google Scholar
  21. Franco, H. C. J., Cantarella, H., Trivelin, P. C. O., Vitti, A. C., Otto, R., Faroni, C. E., et al. (2008). Acúmulo de nutrientes pela cana-planta. (Nutrients accumulation by cane-plant). Sociedade dos Técnicos Açucareiros alcooleiros do Brasil, 26, 41–45.Google Scholar
  22. Franco, H. C. J., Trivelin, P. C. O., Faroni, C. E., Vitti, A. C., & Otto, R. (2010). Stalk yield and technological attributes of planted cane as related to nitrogen fertilization. Scientia Agrícola, 67, 579–590.CrossRefGoogle Scholar
  23. Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  24. Hanke, J. E., & Reitsch, A. G. (1995). Business forecasting (5th ed.). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  25. Johann, J. A., Opazo, M. A. U., Rocha, J. V., & de Souza, E. G. (2002). Modelagem da Correlação Espacial entre Mapas de Produtividade da Soja e Mapas de Atributos do Solo por meio da Análise de Componentes Principais. (Spatial correlation modelling between yield soybean maps and soil attributes maps through principal component analysis). Engenharia Agrícola, 22, 383–390.Google Scholar
  26. Johnson, R. M., & Richard, E. P., Jr. (2005). Sugarcane yield, sugarcane quality, and soil variability in Louisiana. Agronomy Journal, 97, 760–771.CrossRefGoogle Scholar
  27. Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  28. Jolliffe, I. T. (1986). Principal component analysis. New York: Springer.CrossRefGoogle Scholar
  29. Korndörfer, G. H., & Melo, S. P. (2009). Fontes de fósforo (fluida ou sólida) na produtividade agrícola e industrial da cana-de-açúcar. (Sources of phosphorus (fluid or solid) in agricultural and industrial yield of sugar cane). Ciência Agrotecnologica, 33, 92–97.CrossRefGoogle Scholar
  30. Korndörfer, G. H., & Oliveira, L. A. (2005). Potássio na cana de açúcar (Potash in sugarcane crop). In T. Yamada & T. L. Roberts (Eds.), Potássion na Agricultura Brasileira (pp. 469–490). Piracicaba, SP: Editora Associação Brasileira para pesquisa da potassa e do fosfato.Google Scholar
  31. Kumar, V., & Verma, K. S. (1997). Relationship between nutrient element content of the index leaf and cane yield and juice quality of sugarcane genotypes. Communication in Soil Science and Plant Analysis, 28, 1021–1032.CrossRefGoogle Scholar
  32. Kunert, K. J. (2000). Stress physiology: Understanding the limits for plant performance. In Proceedings of the Simpósio Internacional de Fisiologia da Cana-de-açúcar. Piracicaba, SP. (cd-rom).Google Scholar
  33. Landell, M. G. A., Prado, H., Vasconcelos, A. C. M., Perecin, D., Rosseto, R., Bidoia, M. A. P., et al. (2003). Oxisol subsurface chemical attributes related to sugarcane productivity. Scientia Agrícola, 60, 741–745.CrossRefGoogle Scholar
  34. Leite, R. C. D., Leal, M. R. V. L., Cortez, L. A. B., Griffin, W. M., & Scandiffio, M. I. G. (2009). Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy, 34, 655–661.CrossRefGoogle Scholar
  35. Mardia, K. W., Kent, J. T., & Bibby, J. M. (1989). Multivariate analysis. London: Academic press.Google Scholar
  36. Minasny, B., McBratney, A. B., & Whelan, B. M. (1999). VESPER version 1.2. Australian Centre for Precision Agriculture, The University of Sydney. Retrieved October, 2012 from http://sydney.edu.au/agriculture/pal/software/download_vesper.shtml.
  37. Mutton, M. J. R. (2008). Reflexos da qualidade da matéria-prima sobre a fermentação etanólica. (Consequences of the quality of raw material on the ethanol fermentation). In M. G. A Felipe (Ed.), Proceedings of the Workshop Produção de Etanol: qualidade da matéria prima. Lorena, SP.Google Scholar
  38. Novais, R. F., Alvarez, V. H., Barros, N. F., Fontes, R. L. F., Cantarutti, R. B., & Neves, J. C. L. (2007). Fertilidade do Solo (Soil fertility). Viçosa: Sociedade Brasileira de Ciências do Solo.Google Scholar
  39. Raij, B. Van., Quaggio, J. A., Cantarella, H., Ferreira, M. E., Lopes, A. S., & Bataglia, O. C. (1987). Análise química do solo para fins de fertilidade. (Chemical soil analysis for fertility). Campinas, SP: Fundação Cargill.Google Scholar
  40. Rolim, G. D. E. S., Camargo, M. B. P. de, Lania, D. G., & Moraes, J. F. L. de. (2007). Climatic classification of Köppen and Thornthwaite systems and their applicability in the determination of agroclimatic zoning for the state of São Paulo, Brazil. Bragantia, 66(4), 711–720.Google Scholar
  41. Santos, V. R., Moura Filho, G., Albuquerque, A. W., Costa, J. P. V., Santos, C. G., & Santos, A. C. I. (2009). Crescimento e produtividade agrícola de cana-de-açúcar em diferentes fontes de fósforo. (Growth and yield of cane sugar with different phosphorus sources). Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 389–396.CrossRefGoogle Scholar
  42. Slot, M. H., Genthner, M. H., Daniels, W. L., & Groover, V. A. (2001). Spatial variability in Palustrine wetlands. Soil Science Society of America Journal, 65, 527–535.CrossRefGoogle Scholar
  43. Timm, L. C., Reichardt, K., Oliveira, J. C. M., Cassaro, F. A. M., Tominaga, T. T., Bacchi, O. O. S., & Dourado-Neto, D. (2003). Sugarcane production evaluated by the state-space approach. Journal of Hydrology, 272, 226–237.Google Scholar
  44. Vitti, G. C., Mazza, J. A., Quintino, T. A., & Otto, R. (2007). Nutrição e adubação. (Nutrition and fertilization). In T. C. C. Ripoli (Ed). Plantio de cana-de-açúcar: estado da arte (pp. 106–137, 2nd ed.). Piracicaba, SP: Brazil.Google Scholar
  45. Waclawovsky, A. J., Sato, P. M., Lembke, C. G., Moore, P. H., & Souza, G. M. (2010). Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnology Journal, 8, 263–276.PubMedCrossRefGoogle Scholar
  46. Warrick, A. W., & Nielsen, D. R. (1980). Spatial variability of soil physical properties in the field. In D. Hillel (Ed.), Applications of soil physics (pp. 319–440). New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • F. A. RodriguesJr.
    • 1
  • P. S. G. Magalhães
    • 1
    • 2
  • H. C. J. Franco
    • 2
  1. 1.School of Agriculture EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Brazilian Bioethanol Science and Technology Laboratory (CTBE)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil

Personalised recommendations