Precision Agriculture

, Volume 13, Issue 6, pp 713–730 | Cite as

Factors influencing the adoption of precision agricultural technologies: a review for policy implications

  • Yeong Sheng TeyEmail author
  • Mark Brindal
Review Paper


Increasing pressure for food security and sustainability as well as a need to halt environmental degradation has focused attention on increasing the efficient use of farm resources. One answer to aspects of that problem is the use of precision agricultural technologies (PATs). To facilitate their adoption, initiatives have been fostered in developed countries since the 1980s. Despite a low rate of adoption elsewhere, similar efforts in recent years have been initiated in developing countries. Given this, understanding those underlying factors that influence the adoption of PATs is vital. It is timely to review these factors and to draw policy implications from that review for future actions. This review, based on studies investigating the limited adoption of PATs in ‘experienced’ countries, extrapolates their findings to explain why farmers have or have not adopted PATs. At the same time, this review summarizes the key insights for more effectively targeting ‘new’ followers: e.g. it provides some answers to the question of who is more likely to adopt PATs. Additionally, the review points to the limitations of current research in the area and suggests a robust economic model or multidisciplinary approach be adopted for future investigation.


Precision agricultural technologies Adoption Factors Policy 



We thank two anonymous reviewers and Jim Schepers (Co-Editor) for their constructive comments concerning ways to improve the quality of an earlier version of this paper.


  1. Adhikari, A., Mishra, A. K., & Chintawar, S. (2009, January 31-February 3). Adoption of technology and its impact on profitability of young and beginning farmers: A quantile regression approach. Paper presented at the the Southern Agricultural Economics Association Annual Meeting, Georgia, USAGoogle Scholar
  2. Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3), 256–271.CrossRefGoogle Scholar
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.CrossRefGoogle Scholar
  4. Alvarez, J., & Nuthall, P. (2006). Adoption of computer based information systems: the case of dairy farmers in Canterbury, NZ, and Florida, Uruguay. Computers and Electronics in Agriculture, 50(1), 48–60.CrossRefGoogle Scholar
  5. Arnó, J., Rosell, J. R., Blanco, R., Ramos, M. C., & Martínez-Casasnovas, J. A. (2012). Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precision Agriculture, 13(3), 393–410.CrossRefGoogle Scholar
  6. Batte, M. T., Jones, E., & Schnitkey, G. D. (1990). Computer use by Ohio commercial farmers. American Journal of Agricultural Economics, 72(4), 935–945.CrossRefGoogle Scholar
  7. Biermachera, J. T., Brorsenb, B. W., Epplinb, F. M., Soliec, J. B., & Raun, W. R. (2009). The economic potential of precision nitrogen application with wheat based on plant sensing. Agricultural Economics, 40, 397–407.CrossRefGoogle Scholar
  8. Bramley, R. G. V., & Hamilton, R. P. (2007). Terroir and precision viticulture: are they compatible? Journal international des Sciences de la Vigne et du Vin, 41(1), 1–8.Google Scholar
  9. Calkins, P., & Thant, P. P. (2011). Sustainable agro-forestry in Myanmar: from intentions to behavior. Environment, Development and Sustainability, 13(2), 439–461.CrossRefGoogle Scholar
  10. Carlson, J. E., Schnabel, B., Beus, C. E., & Dilman, D. E. (1994). Changes in soil conservation attitudes and behaviors of farmers in the Palouse and Camas prairies: 1976–1990. Journal of Soil and Water Conservation, 49(5), 493–500.Google Scholar
  11. Carr, P., Carlson, G., Jacobson, J., Nielson, G., & Skogley, E. (1991). Farming soils, not fields: a strategy for increasing fertilizer profitability. Journal of Production Agriculture, 4(1), 57–61.Google Scholar
  12. Chen, W., Bell, R. W., Brennan, R. F., Bowden, J. W., Dobermann, A., Rengel, Z., et al. (2009). Key crop nutrient management issues in the Western Australia grains industry: a review. Australian Journal of Soil Research, 47, 1–18.CrossRefGoogle Scholar
  13. Chen, Y. C., Duann, L. S., & Hu, W. P. (2005). The finite-sample properties of maximum likelihood estimators in multinomial probit models. Journal of the Eastern Asia Society for Transportation Studies, 6, 1667–1681.Google Scholar
  14. Daberkow, S. G., & McBride, W. D. (1998). Socioeconomic profiles of early adopters of precision agriculture technologies. Agribusiness, 16(2), 151–168.Google Scholar
  15. Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.CrossRefGoogle Scholar
  16. D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2006). Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 73(6), 630–647.CrossRefGoogle Scholar
  17. Diederen, P., van Meijl, H., Wolters, A., & Bijak, K. (2003). Innovation adoption in agriculture: Innovators, early adopters and laggards. Cahiers D’Economie Et Sociologie Rurales, 67, 30–50.Google Scholar
  18. Edwards-Jones, G. (2006). Modelling farmer decision-making: Concepts, progress and challenges. Animal Science, 82(6), 783–790.CrossRefGoogle Scholar
  19. Feder, G. (1982). Adoption of interrelated agricultural innovations: Complementarity and the impacts of risk, scale, and credit. American Journal of Agricultural Economics, 64(1), 94–101.CrossRefGoogle Scholar
  20. Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255–298.CrossRefGoogle Scholar
  21. Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations: A review. Technological Forecasting and Social Change, 43(3–4), 215–239.CrossRefGoogle Scholar
  22. Fernandez-Cornejo, J., Daberkow, S., & McBride, W. D. (2002). Decomposing the size effect on the adoption of innovations: Agribiotechnology and precision agriculture. AgBioForum, 4(2), 124–136.Google Scholar
  23. Fleming, A., & Vanclay, F. (2010). Farmer responses to climate change and sustainable agriculture: A review. Agronomy for Sustainable Development, 30(1), 11–19.CrossRefGoogle Scholar
  24. Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., et al. (2005). Farmer experience with precision agriculture in Denmark and the US eastern corn belt. Precision Agriculture, 6, 121–141.CrossRefGoogle Scholar
  25. Fuglie, K., & Bosch, D. (1995). Implications of soil nitrogen testing. American Journal of Agricultural Economics, 77, 891–900.CrossRefGoogle Scholar
  26. Hair, J. F. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  27. Heisel, T., Christensen, S., & Walter, A. (1996). Weed managing model for patch spraying in cereal. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 3rd International Conference on Precision Agriculture (pp. 999–1007). Wisconsin, USA: ASA- CSSA- SSSA.Google Scholar
  28. Hill, R. C., Griffiths, W. E., & Lim, G. C. (2008). Principles of Econometrics (3rd ed.) New York: Wiley.Google Scholar
  29. Hite, D., Hudson, D., & Intarapapong, W. (2002). Willingness to pay for water quality improvements: The case of precision application technology. Journal of Agricultural and Resource Economics, 27(2), 433–449.Google Scholar
  30. Hudson, D., & Hite, D. (2003). Producer willingness to pay for precision application technology: Implications for government and the technology industry. Canadian Journal of Agricultural Economics, 51, 39–53.CrossRefGoogle Scholar
  31. Isgin, T., Bilgic, A., Forster, D. L., & Batte, M. (2008). Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture, 62, 231–242.CrossRefGoogle Scholar
  32. Jochinke, D. C., Noonon, B. J., Wachsmann, N. C., & Norton, R. M. (2007). The adoption of precision agriculture in an Australian broadacre cropping system—Challenges and opportunities. Field Crops Research, 104, 68–76.CrossRefGoogle Scholar
  33. Khanna, M. (2001). Sequential adoption of site-specific technologies and its implications for Nitrogen productivity: A double selectivity model. American Journal of Agricultural Economics, 83(1), 35–51.CrossRefGoogle Scholar
  34. Khanna, M., Epouhe, O. E., & Hornbaker, R. (1999). Site-specific crop management: adoption patterns and incentives. Review of Agricultural Economics, 21(2), 455–472.Google Scholar
  35. Khanna, M., & Zilberman, D. (1997). Incentives, precision technology and environmental protection. Ecological Economics, 23, 25–43.CrossRefGoogle Scholar
  36. Kitchen, N. R. (2008). Emerging technologies for real-time and integrated agriculture decisions. Computers and Electronics in Agriculture, 61(1), 1–3.CrossRefGoogle Scholar
  37. Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48.CrossRefGoogle Scholar
  38. Kotler, P. (2003). Marketing Management (11th ed.). New Jersey: Prentice Hall.Google Scholar
  39. Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.CrossRefGoogle Scholar
  40. Lamba, P., Filson, G., & Adekunle, B. (2009). Factors affecting the adoption of best management practices in southern Ontario. Environmentalist, 29(1), 64–77.CrossRefGoogle Scholar
  41. Larson, J. A., Roberts, R. K., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., et al. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture, 9(4), 195–208.CrossRefGoogle Scholar
  42. Lehman, H., Clark, E. A., & Weise, S. F. (1993). Clarifying the definition of sustainable agriculture. Journal of Agricultural and Environmental Ethics, 6(2), 127–143.CrossRefGoogle Scholar
  43. Lowenberg-DeBoer, J., & Aghib, A. (1999). Average returns and risk characteristics of site specific P and K management: Eastern corn belt on-farm trail results. Journal of Production Agriculture, 12(2), 276–282.Google Scholar
  44. Lynne, G., Shonkwiler, J., & Rola, L. (1988). Attitudes and farmer conservation behavior. American Journal of Agricultural Economics, 70(1), 12–19.CrossRefGoogle Scholar
  45. Maohua, W. (2001). Possible adoption of precision agriculture for developing countries at the threshold of the new millennium. Computers and Electronics in Agriculture, 30, 45–50.CrossRefGoogle Scholar
  46. Marra, M. C., & Ssali, B.C. (1990). The role of human capital in the adoption of conservation tillage: The case of Aroostook County, Maine, potato farmers. Experiment Station Bulletin 831, Department of Agricultural and Resource Economics, University of Maine, Bangor.Google Scholar
  47. Marra, M. C., Rejesus, R. M., Roberts, R. K., English, B. C., Larson, J. A., Larkin, S. L., et al. (2010). Estimating the demand and willingness-to-pay for cotton yield monitors. Precision Agriculture, 11(3), 215–238.CrossRefGoogle Scholar
  48. Mercer, D. E. (2004). Adoption of agroforestry innovations in the tropics: A review. Agroforestry Systems, 61(1), 311–328.CrossRefGoogle Scholar
  49. Mondal, P., Basu, M., Bhadoria, P. B. S., Emam, A. A., Salih, M. H., Adegbite, A. A., et al. (2011). Critical review of precision agriculture technologies and its scope of adoption in India. American Journal of Experimental Agriculture, 1(3), 49–68.Google Scholar
  50. Mondal, P., & Tewari, V. K. (2007). Present status of precision farming: A review. International Journal of Agricultural Research, 2(1), 1–10.CrossRefGoogle Scholar
  51. Nelson, F. D. (1981). A test for misspecification in the censored normal model. Econometrica, 49(5), 1317–1329.CrossRefGoogle Scholar
  52. Oriade, C., King, R., Forcella, R., & Gunsolus, J. (1996). A bioeconomic analysis of site-specific management for weed control. Review of Agricultural Economics, 18, 523–535.Google Scholar
  53. Palaniswami, C., Gopalasundaram, P., & Bhaskaran, A. (2011). Application of GPS and GIS in sugarcane agriculture. Sugar Tech, 13(4), 1–6.CrossRefGoogle Scholar
  54. Pattanayak, S., Mercer, D. E., Sills, E., & Yang, J. (2003). Taking stock of agroforestry adoption studies. Agroforestry Systems, 57(3), 173–186.CrossRefGoogle Scholar
  55. Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: results of several surveys among different agricultural target groups. Precision Agriculture, 10(1), 73–94.CrossRefGoogle Scholar
  56. Rezaei-Moghaddam, K., & Salehi, S. (2010). Agricultural specialists’ intention toward precision agriculture technologies: integrating innovation characteristics to technology acceptance model. African Journal of Agricultural Research, 5(11), 1191–1199.Google Scholar
  57. Roberts, R. K., English, B. C., & Larson, J. A. (2002). Factors affecting the location of precision farming technology adoption in Tennessee. Journal of Extension, 40(1), Article 1RIB3.
  58. Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., et al. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 36(1), 143–158.Google Scholar
  59. Robertson, M., Isbister, B., Maling, I., Oliver, Y., Wong, M., Adams, M., et al. (2007). Opportunities and constraints for managing within-field spatial variability in Western Australian grain production. Field Crops Research, 104(1–3), 60–67.CrossRefGoogle Scholar
  60. Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., et al. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precision Agriculture, 13(2), 181–199.Google Scholar
  61. Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). New York: Free Press.Google Scholar
  62. Schmitzberger, I., Wrbka, T., Steurer, B., Aschenbrenner, G., Peterseil, J., & Zechmeister, H. G. (2005). How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agriculture, Ecosystems & Environment, 108(3), 274–290.CrossRefGoogle Scholar
  63. Schnitkey, G., & Hopkins, J. (1997). Precision agriculture technologies: do they have environmental benefits? Ohio’s Challenge, 10, 16–19.Google Scholar
  64. Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88, 157–169.CrossRefGoogle Scholar
  65. Shortle, J. S., & Miranowski, J. A. (1986). Effects of risk perceptions and other characteristics of farmers and farm operations on the adoption of conservation tillage practices. Applied Agricultural Research, 1(2), 85–90.Google Scholar
  66. Silva, C. B., de Moraes, M. A. F. D., & Molin, J. P. (2011). Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precision Agriculture, 12(1), 67–81.CrossRefGoogle Scholar
  67. Silva, C. B., Do Vale, S. M. L. R., Pinto, F. A. C., Muller, C. A. S., & Moura, A. D. (2007). The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precision Agriculture, 8(6), 255–265.CrossRefGoogle Scholar
  68. Swinton, S. M., & Lowenberg-DeBoer, J. (1998). Evaluating the profitability of site-specific farming. Journal of Production Agriculture, 11(4), 439–446.Google Scholar
  69. Swinton, S. M., & Lowenberg-DeBoer, J. (2001). Global adoption of precision agriculture technologies: Who, when and why? In: G. Grenier and S. Blackmore (Ed.), Proceedings of the 3rd European Conference on Precision Agriculture (p. 557–562). Agro Montpellier, Montpellier, FranceGoogle Scholar
  70. Sylvester-Bradley, R., Lord, E., Sparkes, D. L., Scott, R. K., Wiltshire, J. J. J., & Orson, J. (1999). An analysis of the potential of precision farming in Northern Europe. Soil Use and Management, 15(1), 1–8.CrossRefGoogle Scholar
  71. Takacs-Gyorgy, K. (2008). Economic aspects of chemical reduction on farming: Role of precision farming—Will the production structure change? Cereal Research Communications, 36, 19–22.Google Scholar
  72. Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12(5), 762–773.CrossRefGoogle Scholar
  73. Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B. C., Larkin, S. L., et al. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics, 33(3), 428–448.Google Scholar
  74. Timmermann, C., Gerhards, R., Krohmann, P., Sokefeld, M., & Kuhbauch, W. The economical and ecological impact of the site-specific weed control. In: G. Grenier and S. Blackmore (Ed.), Proceedings of the 3rd European conference on precision agriculture, (p. 563–568).Agro Montpellier, Montpellier, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  2. 2.Institute of Agricultural and Food Policy StudiesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations