Precision Agriculture

, Volume 12, Issue 5, pp 762–773 | Cite as

Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines

  • J. Tardaguila
  • J. Baluja
  • L. Arpon
  • P. Balda
  • M. Oliveira
Article

Abstract

To obtain the best must quality, winegrowers must harvest uniform batches of grapes, thus they might define sub-units of the vineyard and treat them as separate management units for cultivation and harvest. The objectives of this work were to determine if there were variations of soil properties that could be arranged into different units of relative uniformity and separated from each other by discrete boundaries, and if there was a significant relationship between those units and the vegetative development and yield components of the grapevines. A soil index that is a linear combination of four soil characteristics was constructed and an interpolation method allowed the definition of soil areas with relative uniformity. These areas were significantly correlated with the vine growth that, in turn, had a significant correlation with the yield components of the vines. This methodology might prove useful to define areas within vineyards where the vegetative development and yields warrant a differentiated management within the vineyard.

Keywords

Vitis vinifera Soil index Natural neighbor interpolation Yield components Precision viticulture 

References

  1. Adamchuk, V. I., Lund, E. D., Reed, T. M., & Ferguson, R. B. (2007). Evaluation of an on-the-go technology for soil pH mapping. Precision Agriculture, 8, 139–149.CrossRefGoogle Scholar
  2. Adekayode, F. O., Aderibigbe, A. O., Balogun, A. M., Adedayo, J. O., & Oladimeji, J. A. (2009). Use of geospatial technology in a precision soil fertility investigation of a farmland for arable crop production in a tropical environment. Journal of Food Agriculture Environment, 7, 852–855.Google Scholar
  3. Andreas-de Prado, R., Yuste-Rojas, M., Sort, X., Andreas-Lacueva, C., Torres, M., Rosa, M., et al. (2007). Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards. Journal of Agriculture Food Chemistry, 55, 779–786.CrossRefGoogle Scholar
  4. Ayoubi, S., Khormali, F., & Sahrawat, K. L. (2009). Relationships of barley biomass and grain yields to soil properties within a field in the arid region, use of factor analysis. Acta Agriculture Scandinava—A Soil Plant Science, 59, 107–117.CrossRefGoogle Scholar
  5. Bates, T. (2008). Pruning level affects growth and yield of New York concord on two training systems. American Journal of Enology and Viticulture, 59, 276–286.Google Scholar
  6. Bodin, F., & Morlat, R. (2006a). Characterization of viticultural terroirs using a simple field model based on soil depth. I Validation of the water supply regime phenology and vine vigour in the Anjou vineyard (France). Plant and Soil, 281, 37–54.CrossRefGoogle Scholar
  7. Bodin, F., & Morlat, R. (2006b). Characterization of viticultural terroirs using a simple field model based on soil depth. II Validation of the grape yield and berry quality in the Anjou vineyard (France). Plant and Soil, 281, 55–69.CrossRefGoogle Scholar
  8. Boissonnat, J., & Cazals, F. (2001). Natural neighbor coordinates of points on a surface. Computational Geometry, 19, 155–173.CrossRefGoogle Scholar
  9. Corstanje, R., Grunwald, S., Reddy, K. R., Osborne, T. Z., & Newman, S. (2006). Assessment of the spatial distribution of soil properties in a Northern Everglades marsh. Journal of Environmental Quality, 35, 938–949.PubMedCrossRefGoogle Scholar
  10. Cortell, J. M., Halbleib, M., Gallagher, A. V., Righetti, T. L., & Kennedy, J. A. (2005). Influence of vine vigor on grape (Vitis vinifera L. cv Pinot Noir) and wine proanthocyanidins. Journal of Agriculture Food Chemistry, 53, 5798–5808.CrossRefGoogle Scholar
  11. Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsal, J. (2006). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24, 115–127.CrossRefGoogle Scholar
  12. Hall, A., Lamb, D. W., Holzapfel, B., & Journal, L. (2002). Optical remote sensing applications in viticulture—a review. Australian Journal of Grape and Wine Research, 8, 36–47.CrossRefGoogle Scholar
  13. Hillel, H. (1998). Environmental soil physics. New York, NY: Academic Press.Google Scholar
  14. Johnson, L. F., Pierce, L., DeMartino, J., Youkhana, S., Nemani, R., & Bosch, D. (2003). Image-based decision tools for vineyard management. Paper no 033129, ASAE. St. Joseph, MI: ASAE.Google Scholar
  15. Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI: Soil Science Society of America.Google Scholar
  16. Ledoux, H., & Gold, C. (2005). An efficient natural neighbour interpolation algorithm for geoscientific modelling. In F. Fisher (Ed.), Developments in spatial data handling: 11th international symposium on spatial data handling (pp. 97–108). Berlin: Springer.Google Scholar
  17. Martinez de Toda, F., Tardaguila, J., & Sancha, J. C. (2007). Estimation of grape quality in vineyards using a new viticultural index. Vitis, 4, 168–173.Google Scholar
  18. McKinion, J. M., Willers, J. L., & Jenkins, J. N. (2010). Spatial analyses to evaluate multi-crop yield stability for a field. Computers and Electronics in Agriculture, 70, 187–198.CrossRefGoogle Scholar
  19. Miller, D. P., & Howell, G. S. (1998). Influence of vine capacity and crop load on canopy development morphology and dry matter partitioning in concord grapevines. American Journal of Enology and Viticulture, 49, 183–190.Google Scholar
  20. Musingo, M., James, N., & Wang, L. (2005). Influence of grape maturity on pH color and total phenolics of red muscadine wine from grapes grown at Florida A&M University vineyard. European Journal of Science Research, 11, 206–217.Google Scholar
  21. Ortega, R., & Santibáñez, O. A. (2007). Determination of management zones in corn (Zea mays L.) based on soil fertility. Computer and Electronics in Agriculture, 58, 49–59.CrossRefGoogle Scholar
  22. Pilar, B., Sánchez-de-Miguel, P., Centeno, A., Junquera, P., Linares, R., & Lissarrague, J. R. (2007). Water relations between leaf water potential photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling. Science Horticulture, 114, 151–158.CrossRefGoogle Scholar
  23. Ping, J. L., Green, C. J., Zartman, R. E., Bronson, K. F., & Morris, T. F. (2008). Spatial variability of soil properties cotton yield and quality in a production field. Communications in Soil Science and Plant Analysis, 39, 1–16.CrossRefGoogle Scholar
  24. Pozdnyakova, L., Giménez, D., & Oudemans, P. V. (2005). Spatial analysis of cranberry yield at three scales. Agronomy Journal, 97, 49–57.CrossRefGoogle Scholar
  25. Proffit, T., Bramley, R., Lamb, D., & Winter, E. (2006). Precision viticulture. A new era in vineyard management and wine production. Ashford, SA: Winetitles.Google Scholar
  26. Reynolds, A. G., & Wardle, D. A. (2001). Evaluation of minimal pruning upon vine performance and berry composition of chancellor. American Journal of Enology and Viticulture, 52, 45–48.Google Scholar
  27. Reynolds, A. G., Senchuk, I. V., van der Reest, C., & de Savigny, C. (2007). Use of GPS and GIS for elucidation of the basis for terroir, spatial variation in an Ontario Riesling vineyard. American Journal of Enology and Viticulture, 58, 145–162.Google Scholar
  28. Schultz, H. R. (1995). Grape canopy structure, light, microclimate and photosynthesis. I A two-dimensional model of the spatial distribution of surface area densities and leaf ages in two canopy systems. Vitis, 34, 211–215.Google Scholar
  29. Secretaria General Técnica. (2009). Encuesta sobre superficies y rendimientos de cultivos (survey on crop land and crop yields). Resultados de 2008. Retrieved July 9, 2009 from http://www.mapa.es/es/estadistica/pags/encuestacultivos/resultados.htm#art2.
  30. Sibson, R. (1981). A brief description of natural neighbour interpolation. In V. Barnett (Ed.), Interpreting multivariate data (pp. 21–36). New York, NY: Wiley.Google Scholar
  31. Simbahan, G. C., & Dobermann, A. (2006). An algorithm for spatially constrained classification of categorical and continuous soil properties. Geoderma, 136, 504–523.CrossRefGoogle Scholar
  32. Smart, R., & Robinson, M. (1991). Sunlight into the vine. A handbook for winegrape canopy management. Ashford, SA: Winetitles.Google Scholar
  33. Soil Survey Staff. (2006). Keys to soil taxonomy (10th ed.). Washington, DC: USDA—National Resources Conservation Service.Google Scholar
  34. Sparks, D. L. (1996). Methods of soil analysis. Part 3. Chemical methods. Madison, WI: Soil Science Society of America.Google Scholar
  35. Tardaguila, M. J. (1996). Ruolo fisiologico dellacua e del portinnestonella vite. Effetti sulla crescita e produttività (Physiological role of water and vitis rootstock. Effect on growth and productivity). PhD Dissertation, Universidad de Castilla-La Mancha.Google Scholar
  36. Taylor, J., & Bramley, R. (2004). Precision viticulture, managing vineyard variability. In R. Blair, P. Williams, & S. Pretorius (Eds.), Proceeding of 12th Australian wine industry technical conference workshop (pp. 51–55). Melbourne Convention Centre, Australia.Google Scholar
  37. van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate soil and cultivar on terroir. American Journal of Enology and Viticulture, 55, 207–217.Google Scholar
  38. Vrindts, E., Mouazen, A. M., Reyniers, M., Maertens, K., Maleki, M. R., Ramon, H., et al. (2005). Management zones based on correlation between soil compaction yield and crop data. Biosystems Engineering, 92, 419–428.CrossRefGoogle Scholar
  39. Warrick, A. W., Myers, D. E., & Nielsen, D. R. (1986). Geostatistical methods applied to soil science. In A. Klute, et al. (Eds.), Methods of soil analysis. Part 1. Agronomy monographs 9 (pp. 53–82). Madison, WI: American Society of Agronomy.Google Scholar
  40. White, R. E. (2006). Principles and practice of soil science: The soil as a natural resource. London: Wiley-Blackwell.Google Scholar
  41. Wu, C., Wu, J., Luo, Y., Zhang, L., & DeGloria, S. D. (2008). Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73, 1202–1208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Tardaguila
    • 1
  • J. Baluja
    • 1
  • L. Arpon
    • 1
  • P. Balda
    • 1
  • M. Oliveira
    • 2
  1. 1.Instituto de Ciencias de la Vid y del Vino, University of La Rioja, CSIC, Gobierno de La RiojaLogroñoSpain
  2. 2.Department of AgronomyUTADVila RealPortugal

Personalised recommendations