Precision Agriculture

, Volume 11, Issue 4, pp 358–378 | Cite as

A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information

  • C. Acevedo-OpazoEmail author
  • B. Tisseyre
  • J. A. Taylor
  • H. Ojeda
  • S. Guillaume


This paper establishes and tests a model to extrapolate vine water status spatially across a vineyard block. The proposed spatial model extrapolates predawn leaf water potential (PLWP), measured at a reference location, to other unsampled locations using a linear combination of spatial ancillary information sources (AIS) and the reference measurement. In the model, the reference value accounts for temporal variability and the AIS accounts for spatial variation of vine water status, which enables extrapolation over the whole domain (vine fields in this case) at any time when a reference measurement is made. The spatial model was validated for two fields planted with Syrah and Mourvèdre during the seasons 2003–2004 and 2005–2006, respectively, in the south of France. The proposed spatial model significantly improved the prediction of vine water status, especially under conditions of high water restriction (PLWP < −0.4 MPa), compared with a non-spatial model. The model was robust to the choice of reference site. The results also highlighted that AIS pertaining to canopy growth are the most relevant variables for predicting PLWP under these experimental conditions. Preliminary results showed the potential to calibrate the model from a limited number of field measurements, making it a realistic option for adoption in commercial vineyards. The success of the spatial model in improving the quality of prediction of PLWP means it could be incorporated into a decision-support tool to improve irrigation management within a vineyard.


Vine water status Spatial prediction model Spatial ancillary information sources Vineyard spatial variability 



This work was funded by the Vinnotec project (Qualimed Pole of Languedoc Roussillon region—France) and the Agropolis Foundation.


  1. Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008a). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285–302.CrossRefGoogle Scholar
  2. Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2010). Spatial extrapolation of the vine (Vitis vinifera L.) water status: A first step towards a spatial prediction model. Irrigation Science, 28, 143–155.CrossRefGoogle Scholar
  3. Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farías, S., & Guillaume, S. (2008b). Is it possible to assess the spatial variability of vine water status? International Journal of Wine and Vine Research, 42, 203–219.Google Scholar
  4. Corwin, D. L., & Lesch, S. M. (2005). Characterizing soil spatial variability with apparent soil electrical conductivity. I. Soil survey. Computers and Electronics in Agriculture, 46, 32–45.Google Scholar
  5. Coulouma, G., Tisseyre, B., & Lagacherie, P. (2010). Is a systematic two dimensional EMI soil survey always relevant for vineyard production management? A test on two pedologically contrasting Mediterranean vineyards (Chap. 24). In R. A. Viscarra-Rossel, A. B. McBratney, & B. Minasny (Eds.), Proximal soil sensing. Progress in soil science series. Heidelburg, Germany: Springer (in press). ISBN 978-90-481-8858-1.Google Scholar
  6. Lamb, D. W., Weedon, M. M., & Bramley, R. G. V. (2004). Using remote sensing to predict phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Australian Journal Grape Wine Research, 10, 46–54.Google Scholar
  7. Martinez-Casanovas, J. A., Valles Bigorda, D., & Ramos, M. C. (2009). Irrigation management zones for precision viticulture according to intra-field variability. In A. Bregt, S. Wolfert, J. E. Wien, & C. Lokhorst (Eds.), EFITA conference ‘09. Proceedings of the 7th EFITA conference (pp. 523–529). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  8. Murisier, F., & Zufferey, V. (1997). Rapport feuille-fruit de la vigne et qualité du raisin. Revue Suisse de Viticulture, Arboriculture, Horticulture, 29, 355–362.Google Scholar
  9. Ojeda, H., Carrillo, N., Deis, L., Tisseyre, B., Heywang, M., & Carbonneau, A. (2005a). Precision viticulture and water status II: Quantitative and qualitative performance of different within field zones, defined from water potential mapping. In H. R. Schultz (Ed.), Proceedings of 14th GESCO congress (pp. 741–748). Geisenheim, Germany: Groupe d’Etudes des Systèmes de Conduite de la Vigne.Google Scholar
  10. Ojeda, H., Lebon, E., Deis, L., Vita, F., & Carbonneau, A. (2005b). Stomatal regulation of Mediterranean grapevine cultivars in drought situations of the southern of France. In H. R. Schultz (Ed.), Proceedings of 14th GESCO congress (pp. 581–587). Geisenheim, Germany: Groupe d’Etudes des Systèmes de Conduite de la Vigne.Google Scholar
  11. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS symposium, NASA SP-351 I (pp. 309–317).Google Scholar
  12. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: A review. Soil and Tillage Research, 83, 173–193.CrossRefGoogle Scholar
  13. Scholander, P. F., Hammel, H. T., Brandstreet, E. T., & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science, 148, 339–346.CrossRefPubMedGoogle Scholar
  14. Schultz, H. R. (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell and Environment, 26, 1393–1405.CrossRefGoogle Scholar
  15. Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Whithin-field temporal stability of some parameters in viticulture: Potential toward a site specific management. International Journal of Wine and Vine Research, 42, 27–39.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. Acevedo-Opazo
    • 1
    Email author
  • B. Tisseyre
    • 2
  • J. A. Taylor
    • 3
  • H. Ojeda
    • 4
  • S. Guillaume
    • 5
  1. 1.Facultad de Ciencias Agrarias, Universidad de Talca, CITRATalcaChile
  2. 2.Montpellier SupAgroUMR ITAPMontpellierFrance
  3. 3.INRA, UMR LISAHMontpellierFrance
  4. 4.INRA, Experimental Station of Pech RougeGruissanFrance
  5. 5.Cemagref UMR ITAPMontpellierFrance

Personalised recommendations