Precision Agriculture

, Volume 12, Issue 1, pp 118–129 | Cite as

Soil spatial variability and site-specific fertilization maps in an apple orchard

  • K. D. Aggelopoulou
  • D. Pateras
  • S. Fountas
  • T. A. Gemtos
  • G. D. Nanos


In the present study, the spatial variability of some soil physical and chemical properties in a 0.8 ha apple orchard were studied. Sixty soil samples were taken from two sampling depths: 0–0.3 m and 0.3–0.6 m. The soil samples were analyzed for the following soil properties: soil texture, pH, cation exchange capacity and NO3–N, NH4–N, P, K, Na, Ca, Mg, Fe, Zn, Mn, Cu, B and organic matter content. Data analysis indicated that most of the nutrients were at sufficient levels. The site-specific application map for N was created based on the amount of N that was removed from the soil with the yield of the previous year. By applying N site-specifically, 38% of N could be saved compared to uniform application.


Malus * domestica Soil sampling Variograms Fertilization maps Variable rate application 



The project was funded by the Greek Ministry of Education through the PYTHAGORAS II programme.


  1. Bhatti, A. U., Mulla, D. J., & Frazier, B. E. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment, 37, 181–191.CrossRefGoogle Scholar
  2. Bongiovanni, R., & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359–387.CrossRefGoogle Scholar
  3. Brady, C. N. (1984). The nature and properties of soils (Chapter 5, 9th ed.). New York: Macmillan Publishing Co.Google Scholar
  4. Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1, 5–14.CrossRefGoogle Scholar
  5. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. K., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.CrossRefGoogle Scholar
  6. Earl, R., Wheeler, P. N., Blackmore, B. S., & Godwin, R. J. (1996). Precision farming—the management of variability. Landwards, 51(4), 18–23.Google Scholar
  7. Gemtos, T., Fountas, S., Blackmore, S., Griepentog, H. W. (2002). Precision farming in Europe and the Greek potential. In A. Sideridis & C. Yialouris (Eds.), HAICTA 2002, Proceedings of the 1st Greek conference on information and communication technology in agriculture (pp. 45–55). Athens, Greece: Agricultural University of Athens.Google Scholar
  8. Graeff, S., & Claupein, W. (2003). Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy, 19, 611–618.CrossRefGoogle Scholar
  9. IFA. (1992). International Fertilizer Association. World Fertilizer Use Manual. Available at, last accessed January 2010.
  10. Koukoulakis, P. (1995). Basic principles of rational fertilization of crops. Crop and Animal Husbandry, 9, 43–61. (in Greek).Google Scholar
  11. Lopez-Granados, F., Jurado-Exposito, M., Alamo, S., & Garcia-Torres, L. (2004). Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21, 209–222.CrossRefGoogle Scholar
  12. Minasny, B., McBratney, A. B., Whelan, B. M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006. (, last accessed August 2009).
  13. Nava, G., Dechen, A., & Nachtigall, G. (2008). Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Communications in Soil Science and Plant Analysis, 39, 96–107.CrossRefGoogle Scholar
  14. Plaster, J. E. (1992). Soil science and management (Chapter 9). Albany, New York: Delmar Publishers Inc.Google Scholar
  15. Pontikis, K. (2003). Applied pomology (p. 74). Athens, Greece: Stamoulis Publications. (in Greek).Google Scholar
  16. Schachtl, J., Huber, G., Maidl, F. X., & Sticksel, E. (2005). Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precision Agriculture, 6, 143–156.CrossRefGoogle Scholar
  17. Sharma, D. D., & Chauhan, J. S. (2005). Effect of different rootstocks on root distribution of apple. Acta Hort, 696, 167–171.Google Scholar
  18. Shukla, M. K., Slater, B. K., Lal, R., & Cepuder, P. (2004). Spatial variability of soil properties and potential management classification of a chernozemic field in lower Australia. Soil Science, 169, 852–860.CrossRefGoogle Scholar
  19. Vasilakakis, M. (2004). General and specialized pomology (pp. 276–311). Thessaloniki, Greece: Gartaganis Publications. (in Greek).Google Scholar
  20. Zaman, Q., & Schuman, W. A. (2006). Nutrient management zones for citrus based on variation in soil properties and tree performance. Precision Agriculture, 7, 45–63.CrossRefGoogle Scholar
  21. Zaman, Q., Schuman, W. A., & Miller, W. M. (2005). Variable rate nitrogen application in florida citrus based on ultrasonically-sensed tree size. Applied Engineering in Agriculture, 21, 331–335.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • K. D. Aggelopoulou
    • 1
  • D. Pateras
    • 2
  • S. Fountas
    • 1
  • T. A. Gemtos
    • 1
  • G. D. Nanos
    • 1
  1. 1.Department of Agriculture, Crop Production & Rural EnvironmentUniversity of ThessalyMagnesiaGreece
  2. 2.Technological Education InstituteLarissaGreece

Personalised recommendations