Precision Agriculture

, Volume 12, Issue 1, pp 55–66 | Cite as

Comparing temperature correction models for soil electrical conductivity measurement

  • Ruijun Ma
  • Alex McBratney
  • Brett Whelan
  • Budiman Minasny
  • Michael Short


There are various factors that affect soil electrical conductivity (EC) measurements, including soil texture, soil water content, cation exchange capacity (CEC) and others. Temperature is an important environmental variable, and different models can be used to correct for its effect on EC measurements and standardize the measurements to 25°C. It is relevant to analyze these models and to determine whether they are consistent with each other. Some models were wrongly cited. We found that the exponential model of Sheets and Hendrickx as corrected by Corwin and Lesch in 2005 performs the best. The ratio model also performs well between 3°C and 47°C.


Soil electrical conductivity (EC) Temperature Models 


  1. Auerswald, K., Simon, S., & Stanjek, H. (2001). Influence of soil properties on electrical conductivity under humid water regimes. Soil Science, 166, 382–390.CrossRefGoogle Scholar
  2. Barry, J. A., Douglas Groom, M., Reza, E., & Jeffrey, J. D. (2008). Resistivity methods. In J. A. Barry, J. D. Jeffrey, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 86–91). Boca Raton, FL: CRC Press.Google Scholar
  3. Besson, A., Cousin, I., Dorigny, A., Dabas, M., & King, D. (2008). The temperature correction for the electrical resistivity measurements in undisturbed soil samples: Analysis of the existing conversion models and proposal of a new model. Soil Science, 173, 707–720.CrossRefGoogle Scholar
  4. Brevik, E. C., Fenton, T. E., & Horton, R. (2004). Effect of daily soil temperature fluctuations on soil electrical conductivity as measured with the Geonics EM-38. Precision Agriculture, 5, 145–152.CrossRefGoogle Scholar
  5. Campbell, R. B., Bower, C. A., & Richards, L. A. (1948). Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts. Soil Science Society of America Proceedings, 13, 66–69.CrossRefGoogle Scholar
  6. Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.CrossRefGoogle Scholar
  7. Dalliger, T. E. (2006). Geometric and temperature effects on time domain reflectometry measurements in soils. Masters Thesis, Purdue University, West Lafayette, IN.Google Scholar
  8. Drnevich,V. P., Zambrano, C. E., Jung, S., & Clarke, J. P. (2008). Electrical conductivity of soils and soil properties. In A. Alshawabkeh, K. R. Reddy, & M. V. Khire (Eds.), GeoCongress 2008: Characterization, monitoring, and modeling of GeoSystems (pp. 317–323). Geotechnical special publication No. 179. New Orleans, LA: The American Society of Civil Engineers.Google Scholar
  9. Durlesser, H. (1999). Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren (Determination of the spatial and temporal variability of physical soil parameters using electromagnetic induction). Stuttgart: Shaker Verlag (in German).Google Scholar
  10. Eijkelkamp Agrisearch Equipment. (2003). Operating instructions, EC-probe set for soil conductivity measurements. The Netherlands.Google Scholar
  11. Franson, M. A. H. (1985). Standard methods for the examination of water and wastewater (16th ed.). Washington, DC: American Public Health Association.Google Scholar
  12. Friedman, S. P. (2005). Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 46, 45–70.CrossRefGoogle Scholar
  13. Hayashi, M. (2004). Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environmental Monitoring and Assessment, 96, 119–128.CrossRefPubMedGoogle Scholar
  14. Heimovaara, T. J., Focke, A. G., Boute, W., & Verstraten, J. M. (1995). Assessing temporal variations in soil water composition with time domain reflectometry. Soil Science Society of America Journal, 59, 689–698.CrossRefGoogle Scholar
  15. Huth, N. I., & Poulton, P. I. (2007). An electromagnetic induction method for monitoring variation in soil moisture in agroforestry systems. Australian Journal of Soil Research, 45, 63–72.CrossRefGoogle Scholar
  16. Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting (pp. 30–33). Oxford, UK: Pergamon Press.Google Scholar
  17. Lück, E., Rühlmann, J., & Spangenberg, U. (2005). Physical background of soil EC mapping: Laboratory, theoretical and field studies. In J. V. Stafford (Ed.), Precision agriculture’05 (pp. 417–424). The Netherlands: Wageningen Academic Publishers.Google Scholar
  18. Persson, M., & Berndtsson, R. (1998). Texture and electrical conductivity effects on temperature dependency in time domain reflectometry. Soil Science Society of America Journal, 62, 887–893.CrossRefGoogle Scholar
  19. Rhoades, J. D., Chanduvi, F., & Lesch, S. (1999). Soil salinity assessment: Methods and interpretation of electrical conductivity measurements (pp. 1–150). FAO Irrigation and Drainage Paper No. 57. Rome, Italy: Food and Agriculture Organization of the United Nations.Google Scholar
  20. Robinson, D. A., Lebron, I., Lesch, S. M., & Shouse, P. (2004). Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. Soil Science Society of America Journal, 68, 339–345.CrossRefGoogle Scholar
  21. Scollar, I., Tabbagh, A., Hesse, A., & Herzog, I. (1990). Archaeological prospecting and remote sensing. New York: The Press Syndicate of the University of Cambridge.Google Scholar
  22. Sheets, K. R., & Hendrickx, J. M. H. (1995). Non-invasive soil water content measurement using electromagnetic induction. Water Resource Research, 31, 2401–2409.CrossRefGoogle Scholar
  23. Slavich, P. G., & Petterson, G. H. (1990). Estimating average rootzone salinity from electromagnetic induction (EM-38) measurements. Australian Journal of Soil Research, 28, 453–463.CrossRefGoogle Scholar
  24. Sorensen, J. A., & Glass, G. E. (1987). Ion and temperature dependence of electrical conductance for natural waters. Analytical Chemistry, 59, 1594–1597.CrossRefGoogle Scholar
  25. Stogryn, A. (1971). Equations for calculating the dielectric constant of saline water. IEEE Transactions of Microwave Theory and Techniques, 19, 733–736.CrossRefGoogle Scholar
  26. Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31, 239–264.CrossRefGoogle Scholar
  27. U.S. Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. In L. A. Richards (Ed.), USDA agriculture handbook no. 60 (pp. 90). Washington, D.C.: U.S. Government Printing Office.Google Scholar
  28. Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: Active and passive, vol. III, from theory to applications (pp. 2022–2025). Dedham, MA: Artech House.Google Scholar
  29. Wells, C. B. (1978). Electrolytic conductivity of soil solutions and wares: conversions from field to standard temperatures. Division of Soils Technical Paper No. 37, 1–17. Commonwealth Scientific and Industrial Research Organization, Australia.Google Scholar
  30. Wely, P. K. (1964). On the change in electrical conductance of sea water with temperature. Limnology Oceanography, 9, 75–78.CrossRefGoogle Scholar
  31. Wooster, W. S., Lee, A. J., & Dietrich, G. (1969). Redefinition of salinity. Deep-Sea Research, 16, 321–322.Google Scholar
  32. Wraith, J. M., & Or, D. (1999). Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development. Water Resource Research, 35, 361–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ruijun Ma
    • 1
  • Alex McBratney
    • 2
  • Brett Whelan
    • 2
  • Budiman Minasny
    • 2
  • Michael Short
    • 2
  1. 1.College of Engineering, Key Laboratory of Key Technology on Agricultural Machine and EquipmentSouth China Agricultural University, Ministry of EducationGuangzhouChina
  2. 2.Australian Centre for Precision Agriculture, Faculty of Agriculture, Food and Natural ResourcesThe University of SydneySydneyAustralia

Personalised recommendations