Precision Agriculture

, Volume 11, Issue 2, pp 115–134 | Cite as

Precision turfgrass management: challenges and field applications for mapping turfgrass soil and stress

  • Robert N. Carrow
  • Joseph M. Krum
  • Ian Flitcroft
  • Van Cline
Article

Abstract

Spatial and temporal variation of soil, climate, plants and irrigation requirements are challenges for modern agriculture and complex turfgrass sites. Precision agriculture (PA) evolved to improve site-specific management based on obtaining site-specific information. The focus of this concept paper is on the emerging area of precision turfgrass management (PTM) with attention given to: (a) comparing the concepts of PTM and PA in terms of driving forces and challenges that must be addressed for PTM to progress in science and practice and (b) discussion of specific field mapping applications (purposes) for different turfgrass situations such as golf courses, sod production fields and sports fields. The field applications relate to site-specific management of irrigation, salinity, fertilizer application and cultivation. To illustrate the potential for PTM, different approaches that may be necessary for PTM compared to PA are discussed. The initial factor that hindered the adoption of PTM has been the lack of mobile sensor platforms that can determine both key soil and plant properties for turfgrass situations. This paper concentrates on PTM field applications that involve mapping of both soil and plant attributes, in contrast to only optical sensing mapping.

Keywords

Site-specific management Precision turfgrass management (PTM) Water conservation Normalized difference vegetation index (NDVI) 

References

  1. Australian Centre for Precision Agriculture. (2009). ACPA web-site with for precision agriculture. ACPA, University of Sydney, Sydney, Australia. http://www.usyd.edu.au/agric/acpa/.
  2. Beard, J. B., & Kenna, M. P. (Eds.). (2008). Water Quality and Quantity Issues for Turfgrasses in Urban Landscapes. CAST Special Publication 27. Ames, IA: Council for Agricultural Science and Technology.Google Scholar
  3. Bell, G. E., & Xiong, X. (2008). The history, role, and potential of optical sensing for practical turf management. In P. Pessaraki (Ed.), Handbook of turfgrass management and physiology (pp. 641–660). Boca Raton, FL: CRC Press.Google Scholar
  4. Bouma, J., Stoorvogel, J., van Alphen, B. J., & Booltink, H. W. G. (1999). Pedology, precision agriculture, and the changing paradigm of agricultural research. Soil Science, 63, 1763–1768.Google Scholar
  5. Bramley, R. G. V. (2009). Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science, 60, 197–217.CrossRefGoogle Scholar
  6. Bramley, R. G. V., & Janik, L. J. (2005). Precision agriculture demands a new approach to soil and plant sampling and analysis–examples from Australia. Communications in Soil Science and Plant Analysis, 36, 9–22.CrossRefGoogle Scholar
  7. Carrow, R. N., Cline, V., & Krum, J. (2007). Monitoring spatial variability in soil properties and turfgrass stress: Applications and protocols. In Proceedings of 28th international irrigation show (pp. 641–645). 9–11 Dec 2007. San Diego, CA. Falls Church, VA: Irrigation Assoc.Google Scholar
  8. Carrow, R. N., & Duncan, R. R. (1998). Salt-affected turfgrass sites: Assessment and management. Hoboken, NJ: Wiley.Google Scholar
  9. Carrow, R. N., & Duncan, R. R. (2008). Turfgrass BMPs for water resources: Holistic-systems approach. In M. Kenna & J. B. Beard (Eds.), Water quality and quantity issues for turfgrasses in urban landscapes (pp. 273–294). Ames, IA: Council for Agricultural Science and Technology. CAST Special Pub. 27.Google Scholar
  10. Carrow, R. N., Flitcroft, I., & Krum, J. M. (2008). Development of a mobile 4-wenner array based salinity monitoring device for turfgrass situations. In Proceedings of the American Society of Agronomy annual meeting, Oct. 5–9, Houston, TX. http://acs.confex.com/crops/2008am/techprogram/P44582.HTM.
  11. Carrow, R. N., & Petrovic, A. M. (1992). Effects of traffic on turfgrasses. In D. V. Waddington, R. N. Carrow, & R. S. Shearman (Eds.), Turfgrass. (Chap. 9, pp. 286-330). American Society of Agronomy Monograph No. 32. Madison, WI: A.S.A.Google Scholar
  12. Corwin, D. L., & Lesch, S. M. (2005a). Characterizing soil spatial variability with apparent soil electrical conductivity I. survey protocols. Computers and Electronics in Agriculture, 46, 103–134.CrossRefGoogle Scholar
  13. Corwin, D. L., & Lesch, S. M. (2005b). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.CrossRefGoogle Scholar
  14. Delgado, J. A., & Berry, J. K. (2008). Advances in precision conservation. Advances in Agronomy, 98, 1–44.CrossRefGoogle Scholar
  15. Devitt, D. A., Lockett, M., Morris, R. L., & Bird, B. M. (2007). Spatial and temporal distribution of salts on fairways and greens irrigated with reuse water. Agronomy Journal, 99, 692–700.CrossRefGoogle Scholar
  16. Dodson, R. G. (2005). Sustainable golf courses—a guide to environmental stewardship. New York, NY: Wiley.Google Scholar
  17. Duffera, M. J., White, G., & Weisz, R. (2007). Spatial variability of Southeastern U.S. Coastal Plain soil physical properties: Implications for site-specific management. Geoderma, 137, 7–339.CrossRefGoogle Scholar
  18. Dukes, M.D., Haley, M. B., & Hank, S. A. (2006). Sprinkler irrigation and soil moisture uniformity. In Proceedings of 27th international irrigation show (pp. 446–460). 5–7 Nov 2006. San Antonio, TX. Falls Church, VA: Irrigation Assoc. http://www.irrigation.org/gov/pdf/Michael_Dukes_Paper.pdf.
  19. Duncan, R. R., Carrow, R. N., & Huck, M. (2009). Turfgrass and landscape irrigation water quality: Assessment and management (p. 464). Boca Raton, FL: CRC Press.Google Scholar
  20. Flowers, M., Weisz, R., & White, J. G. (2005). Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability. Agronomy Journal, 97, 968–982.CrossRefGoogle Scholar
  21. Fountas, S., Kyhn, M., Jakobsen, H. L., Wulfsohn, D., Blackmore, S., & Griepentrog, H. W. (2009). A systems analysis of information system requirements for an experimental farm. Precision Agriculture, 10, 247–261.CrossRefGoogle Scholar
  22. Hedley, C. B., & Yule, I. J. (2009). Soil water status mapping and two variable-rate irrigation scenarios. Precision Agriculture, 10, 342–355.CrossRefGoogle Scholar
  23. Ikenaga, S., & Inamura, T. (2008). Evaluation of site-specific management zones on a farm with 124 contiguous small paddy fields in a multiple-cropping system. Precision Agriculture, 9, 147–159.CrossRefGoogle Scholar
  24. Irrigation Association. (2005). Landscape irrigation scheduling and water management. Falls Church, VA: Irrigation Association. http://www.irrigation.org/gov/pdf/liswm_part2of3.pdf.
  25. Irrigation Association. (2009). Recommended audit guidelines. Falls Church, VA: Irrigation Association. http://www.irrigation.org/certification/pdf/AuditGuidelines_FINAL.pdf.
  26. Johnson, C. K., Doran, J. W., Duke, H. R., Wienhold, B. J., Eskridge, K. M., & Shanahan, J. F. (2001). Field-scale electrical conductivity mapping for delineating soil conditions. Soil Science Society of America Journal, 65, 1829–1837.CrossRefGoogle Scholar
  27. Kieffer D. L., & O’Conner, T. S. (2007). Managing soil moisture on golf greens using a portable wave reflectometer. In Proceedings of 28th International Irrigation Show. 9–11 Dec 2007. CD-ROM. Irrigation Association, Falls Church, VA.Google Scholar
  28. Khosla, R., Westfall, D., Reich, R., & Inman, D. (2006). Temporal and spatial stability of soil test parameters used in precision agriculture. Communications in Soil Science and Plant Analysis, 37, 2127–2136.CrossRefGoogle Scholar
  29. Krum, J. H., Carrow, R. N., & Karnok, K. (2010). Spatial mapping of complex turfgrass sites: Site-specific management units and protocols. Crop Science, 50 (in press).Google Scholar
  30. Lamb, D. W., Frazier, P., & Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture, 61, 4–9.CrossRefGoogle Scholar
  31. McAuliffe, K. W. (2008). The role of performance testing and standards in the sports turf industry: A case study approach. In J. C. Stier, L. Han & D. Li. (Eds.). Proceedings of 2nd international conference on turfgrass management and sports fields (pp. 391–398). International Society of Horticultural Science, Belgium. Acta Horticulturae 783 http://www.actahort.org/books/783/783_41.htm.
  32. McBratney, A., Whelan, B., & Ancev, T. (2005). Future directions of precision agriculture. Precision Agriculture, 6, 7–23.CrossRefGoogle Scholar
  33. McCormick, S., Jordan, C., & Bailey, J. S. (2009). Within and between-field spatial variation in soil phosphorus in perennial grassland. Precision Agriculture, 10, 262–276.CrossRefGoogle Scholar
  34. PrecisionAg Work. (2009). Web-site on precision agriculture. Willoughby, OH: PrecisionAG Institute, Meister Media Worldwide. http://www.precisionag.com/works/.
  35. Rhoades, J. D. (1993). Electrical conductivity methods for measuring and mapping soil salinity. In D. L. Sparks (Ed.), Advances in Agronomy, 49, 201–251.Google Scholar
  36. Sadler, E. J., Camp, C. R., & Evans, R. G. (2007). New and future technology. In B. A. Stewart and D. R. Nielsen (Eds.) Irrigation of agricultural crops (2nd ed.) Agronomy. Monograph No. 30. (pp. 609–626). Madison, WI: Crop Science Society of America.Google Scholar
  37. Shaner, D. L., Khosla, R., Brodahl, M. K., Buchleiter, G. W., & Farahani, H. J. (2008). How well does zone sampling based in soil electrical conductivity maps represent soil variability? Agronomy Journal, 100, 1472–1480.CrossRefGoogle Scholar
  38. Starr, G. C. (2005). Assessing temporal stability and spatial variability of soil water patterns with implication for precision water management. Agricultural Water Management, 72, 223–243.CrossRefGoogle Scholar
  39. Steinberger, G., Rothmund, M., & Auerhammer, H. (2009). Mobile farm equipment as a data source in an agricultural service architecture. Computers and Electronics in Agriculture, 65, 238–246.CrossRefGoogle Scholar
  40. Stowell, L., & Gelernter, W. (2006). Sensing the future. Golf Course Management, 74, 107–110.Google Scholar
  41. Taylor, J. A., McBratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural productions. Agronomy Journal, 99, 1366–1376.CrossRefGoogle Scholar
  42. Thigpen, M. (2007). Precision turfing…coming of age, part one. Turfnet—the newsletter 14(9), 1–4. http://www.nutecsoil.com/precision_turfing.pdf.
  43. Thomsen, A., Schelde, K., Droscher, P., & Steffensen, F. (2007). Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity. Precision Agriculture, 8, 213–223.CrossRefGoogle Scholar
  44. Trenholm, L. E., Carrow, R. N., & Duncan, R. R. (1999). Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Science, 39, 763–769.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert N. Carrow
    • 1
  • Joseph M. Krum
    • 1
  • Ian Flitcroft
    • 1
  • Van Cline
    • 2
  1. 1.Department of Crop and Soil ScienceUniversity of Georgia/Griffin CampusGriffinUSA
  2. 2.The Toro CompanyBloomingtonUSA

Personalised recommendations