Advertisement

Precision Agriculture

, 10:546 | Cite as

Applications of open geospatial web services in precision agriculture: a review

  • Edward Nash
  • Peter Korduan
  • Ralf Bill
Article

Abstract

Precision agriculture requires the collection, storage, sharing and analysis of large quantities of spatially referenced data. For this data to be effectively used, it must be transferred between different hardware, software and organisations. These data flows currently present a hurdle to uptake of precision agriculture as the multitude of data models, formats, interfaces and reference systems in use result in incompatibilities. This paper presents work on applying standards from the Open Geospatial Consortium and related initiatives to automate agricultural data processing. The selected use-cases demonstrate how such standards may be used to improve the inter-operability of data and software in precision agriculture.

Keywords

Automation Data management Standardisation Web services Workflows 

Notes

Acknowledgments

This work was carried out through sub-project “Spatial Data Infrastructures for Precision Farming” of pre agro, which was a collaborative research project funded by the German Federal Ministry of Education and Research (BMBF) under grant reference number 0330663. The authors take full responsibility for the content of this paper.

References

  1. AgXML. (2009). AgXML. Available from http://www.agxml.org. Last accessed 26/03/2009.
  2. Botts, M., Percivall, G., Reed, C., & Davidson, J. (Eds.). (2006). OGC ® sensor web enablement: Overview and high level architecture. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  3. Bray, T., Paoli, J., & Sperberg, C. M. (Eds.). (1998). Extensible Markup Language (XML) 1.0. W3C Recommendation 10-February-1998. World Wide Web Consortium, Cambridge, MA, USA. Available from http://www.w3.org/TR/1998/REC-xml-19980210. Last accessed 25/03/2009.
  4. Cambridge Systematics, Inc. with Bentley Systems, Inc., Info Tech, Inc., Michael Baker Jr. Inc., & Campbell, C. E. (2006). XML schemas for exchange of transportation data. NCHRP 20-64 final report. Available from http://www.transxml.com/Info/Project+Documents/Downloads_GetFile.aspx?id=627. Last accessed 25/03/2009.
  5. Casadesus, J., Biel, C., & Bonany, J. (2007). Architecture and requirements for sensor-controlled irrigation. In C. Parker (Ed.), Proceedings of EFITA/WCCA 2007, Glasgow Caledonian University. Available from http://www.efita.net/apps/accesbase/bindocload.asp?d=6267&t=0&identobj=hYIVwdxX&uid=57305290&sid=57305290&idk=1. Last accessed 25/03/2009.
  6. Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services description language (WSDL) 1.1. World Wide Web Consortium, Cambridge, MA, USA. Available from http://www.w3.org/TR/wsdl. Last accessed 25/03/2009.
  7. Cox, S., Daisey, P., Lake, R., Portele, C., & Whiteside, A. (Eds.). (2003). OpenGIS ® geography markup language (GML) implementation specification, Version 3.1.1. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  8. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., & Weerawarana, S. (2003). The next step in web services. Communications of the ACM, 46(10), 29–34.CrossRefGoogle Scholar
  9. De la Beaujadiere, J. (Ed.). (2006). OpenGIS ® web map server implementation specification. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  10. Duschene, P., & Sonnet, J. (Eds.). (2005a). WCS change request: Support for WSDL & SOAP. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  11. Duschene, P., & Sonnet, J. (Eds.). (2005b). WMS change request: Support for WSDL & SOAP. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  12. EC (European Commission). (2007). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF. Last accessed 25/03/2009.
  13. Egenhofer, M. (1993). What’s special about spatial? Database requirements for vehicle navigation in geographic space. ACM SIGMOD Record, 22(2), 398–402.CrossRefGoogle Scholar
  14. Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., et al. (2005). Farmer experience with precision agriculture in Denmark and the US eastern corn belt. Precision Agriculture, 6(2), 121–141.CrossRefGoogle Scholar
  15. Freier, A. O., Karlton, P., & Kocher, P. C. (1996). The SSL protocol, version 3.0. IETF, Freemont, CA, USA. Available from http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00. Last accessed 26/03/2009.
  16. Goense, D., Thelen, J., & Langendoen, K. (2005). Wireless sensor networks for precise Phytophthora decision support. In J. Stafford (Ed.), Precision agriculture’05 proceedings of the 5th European conference on precision agriculture (pp. 573–580). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  17. Gröger, G., Kolbe, T. H., & Czerwinski, A. (Eds.). (2006). Candidate OpenGIS ® CityGML implementation specification. Wayland, MA., USA: Open Geospatial Consortium, Inc.Google Scholar
  18. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., & Nielsen, H. F. (Eds.). (2003). SOAP version 1.2 part 1: Messaging framework. World Wide Web Consortium, Cambridge, MA, USA. Available from http://www.w3.org/TR/soap12-part1/. Last accessed 25/03/2009.
  19. Heer, I., Schiess, M., & Wälti, D. (2009). Harmonisierung der schweizerischen Primärsektordaten mittles eines Enterprise Service Bus mit einer “Service Oriented Architecture” (Harmonisation of the Swiss primary sector using an enterprise service bus with a “service oriented architecture.”). In R. Bill, P. Korduan, & L. M. Theuvsen (Eds.), Anforderungen an die Agrarinformatik durch Globalisierung und Klimaveränderung (Challenges for agricultural informatics through globalisation and climate change), proceedings of the 29th GIL conference, 9–10 March 2009 (pp. 57–60), Rostock. Gesellschaft für Informatik, Bonn, Germany. ISBN 9783885792369.Google Scholar
  20. Heier, C., & Kiehle, C. (2006). Automatisierte Liegenschaftsauskunft mittels OGC Web Processing Service (Automated cadastre disclosure using the OGC web processing service). Geo-Informationssysteme, 19(7), 12–16.Google Scholar
  21. Hobona, G., Fairbairn, D., Hiden, H., & James, P. (2009a). Orchestration of grid-enabled geospatial web services in geoscientific workflows. IEEE Transactions on Automation Science and Engineering (in press). doi: 10.1109/TASE.2008.2010626.
  22. Hobona, G., Jackson, M., Gould, M., Higgins, C., Brauner, J., Matheus, A., et al. (2009b). Establishing a persistent interoperability test-bed for European geospatial research. In J.-H. Haunert, B. Kieler, & J. Milde (Eds.), Proceedings of the 12th AGILE international conference on geographic information science, 2–5 June 2009, Hannover, Germany. CD-ROM ISSN 2073-8013. Also available at http://plone.itc.nl/agile_old/Conference/2009-hannover/pdfs/31.pdf. Last accessed 31/07/2009.
  23. IJSDIR (International Journal of Spatial Data Infrastructures Research). (2009). Available at http://ijsdir.jrc.ec.europa.eu. Last accessed 26/03/2009.
  24. IMAGI (Interministerieller Ausschuss für Geoinformation). (2009). Geodateninfrastruktur Deutschland (Spatial Data Infrastructure for Germany). Available at http://www.gdi-de.de. Last accessed 25/03/2009.
  25. Internet2. (2009). Shibboleth. Available at http://shibboleth.internet2.edu. Last accessed 25/03/2009.
  26. Jarfe, A., & Werner, A. (2000). Development of a GIS-based management system for precision agriculture. In H. H. Tok (Ed.), Agroenviron 2000: Proceedings of the 2nd international symposium on new technologies for environmental monitoring and agro-applications (Tekirdağ University, Turkey, pp. 121–125). ISBN 975-374-29-8.Google Scholar
  27. Kiehle, C., Greve, K., & Heier, C. (2006). Standardized geoprocessing—taking spatial data infrastructures one step further. In J. Suárez & B. Márkus (Eds.), Proceedings of the 9th AGILE conference on geographic information science (Visegrád, Hungary, pp. 273–282). ISBN 963-229-422-X.Google Scholar
  28. Kim, Y., & Evans, R. G. (2009). Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture, 65(1), 159–165.CrossRefGoogle Scholar
  29. Kitchen, N. R., Snyder, C. J., Franzen, D. W., & Wiebold, W. J. (2005). Educational needs of precision agriculture. Precision Agriculture, 3(4), 341–351.CrossRefGoogle Scholar
  30. Korduan, P., & Nash, E. (2005). Integration von ISO- und agroXML in GML (Integration of ISO- and agroXML in GML). In A. B. Cremers, R. Manthey, P. Martini, & V. Steinhage (Eds.), Proceedings of the 35th annual meeting of the Gesellschaft für Informatik e.V., Bonn (pp. 375–379). ISBN 3-88579-396-2.Google Scholar
  31. Kunisch, M., Frisch, J., Martini, D., Schmitz, M., & Böttinger, S. (2009). Stand der Entwicklung von agroXML (State of development of agroXML). In R. Bill, P. Korduan, & L. M. Theuvsen (Eds.), Anforderungen an die Agrarinformatik durch Globalisierung und Klimaveränderung (Challenges for agricultural informatics through globalisation and climate change), proceedings of the 29th GIL conference, 9–10 March 2009 (pp. 89–92), Rostock. Gesellschaft für Informatik, Bonn, Germany. ISBN 9783885792369.Google Scholar
  32. LAiV (Landesamt für innere Verwaltung). (2009). GeoPortal.MV. http://www.geodaten-mv.de/. Last accessed 25/03/2009.
  33. Lokhorst, K., Goense, D., Ipema, B., de Vries, H., & van Grootheest, J.-E. (2008). Agriculture benefit from the LOFAR infrastructure. In L. Kooistra & A. Ligtenberg (Eds.), Proceedings workshop sensing a changing world, 19–21/11/2008 (pp. 96–99). The Netherlands: Wageningen University. Google Scholar
  34. McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.CrossRefGoogle Scholar
  35. Morais, R., Fernandes, M. A., Matos, S. G., Serôdio, C., Ferreira, P. J. S. G., & Reis, M. J. C. S. (2008). A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62(2), 94–106.CrossRefGoogle Scholar
  36. Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Jr., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007). An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture, 58(1), 37–48.CrossRefGoogle Scholar
  37. NASA. (2009). OnEarth server. Available from http://wms.jpl.nasa.gov/. Last accessed 23/03/2009.
  38. Nash, E., Bobert, J., Wenkel, K.-O., Mirschel, W., & Wieland, R. (2007). Geocomputing made simple: Service-chain based automated geoprocessing for precision agriculture. In U. Demšar (Ed.), Proceedings of the 9th international conference on geocomputation, National University of Ireland, Maynooth. Available at http://ncg.nuim.ie/geocomputation/sessions/2A/2A1.pdf. Last accessed 31/07/2009.
  39. Pedersen, S. M., Fountas, S., Blackmore, B. S., Gylling, M., & Pedersen, J. L. (2004). Adoption and perspective of precision farming in Denmark. Acta Agriculturae Scandinavica Section B, Soil and Plant Science, 54(1), 2–6.CrossRefGoogle Scholar
  40. Pierce, F. J., & Elliot, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61(1), 32–43.CrossRefGoogle Scholar
  41. Reichardt, M., & Juergens, C. (2006). The farmers view on the usability of precision farming in Germany—results of a multi-temporal survey. In Agricultural engineering for a better world: Proceedings of XVI CIGR world congress (VDI Verlag GmbH Düsseldorf). ISBN 3-18-091958-2 (book of abstracts)/ISSN 0083-5560 (CD-ROM of full papers).Google Scholar
  42. Schut, P. (Ed.). (2007). OpenGIS ® Web Processing Service. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  43. Spilke, J., & Zürnstein, K. (2005). Webservices—Beschreibung eines Ansatzes zur Anwendungskopplung und von Nutzensmöglichkeiten im Agrarbereich (Web services—description of an approach for application integration and of possibilities for usage in the agricultural sector). Zeitschrift für Agrarinformatik, 13(2), 33–40.Google Scholar
  44. Steinberger, G., Rothmund, M., & Auernhammer H. (2006). Agricultural Process Data Service (APDS). In Agricultural engineering for a better world: Proceedings of XVI CIGR world congress (VDI Verlag GmbH Düsseldorf). ISBN 3-18-091958-2 (book of abstacts)/ISSN 0083-5560 (CD-ROM of full papers).Google Scholar
  45. Steinberger, G., Rothmund, M., & Auernhammer, H. (2009). Mobile farm equipment as a data source in an agricultural service architecture. Computers and Electronics in Agriculture, 65(2), 238–246.CrossRefGoogle Scholar
  46. Steinberger, G., Rothmund, M., Martini, D., Spietz, C., Mallon, D., & Nash, E. (2007). Integrating agroXML into an agricultural spatial data infrastructure. Landtechnik, 62(2), 114–115.Google Scholar
  47. Stollberg, B., Lutz, M., Ostländer, N., & Bernard, L. (2007). Geoprozessierung in Geodateninfrastrukturen—Aufgaben für die nächste Generation.(Geoprocessing in spatial data infrastructures—challenges for the next generation). GIS Zeitschrift für Geoinformatik 4/2007, pp. 22–27.Google Scholar
  48. Tu, S., & Abdelguerfi, M. (2006). Web services for geographic information systems. IEEE Internet Computing, 10(5), 13–15.CrossRefGoogle Scholar
  49. Vellidis, G., Garrick, V., Pocknee, S., Perry, C., Kvien, C., & Tucker, M. (2007). How wireless will change agriculture. In J. Stafford (Ed.), Precision agriculture’07 proceedings of the 6th European conference on precision agriculture (pp. 57–67). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  50. Vretanos, P. (Ed.). (2005). Web feature service implementation specification. Wayland, MA, USA: Open Geospatial Consortium, Inc.Google Scholar
  51. Walter, K., & Nash, E. (2009). Coupling wireless sensor networks and the Sensor Observation Service—bridging the interoperability gap. In J.-H. Haunert, B. Kieler, & J. Milde (Eds.), Proceedings of the 12th AGILE international conference on geographic information science, 2–5 June 2009, Hannover, Germany. CD-ROM ISSN 2073-8013. Also available at http://plone.itc.nl/agile_old/Conference/2009-hannover/pdfs/119.pdf. Last accessed 31/07/2009.
  52. Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry: Recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chair of Geodesy and Geoinformatics, Institute for Management of Rural Areas, Faculty of Agricultural and Environmental SciencesRostock UniversityRostockGermany

Personalised recommendations