Advertisement

Precision Agriculture

, Volume 11, Issue 1, pp 27–41 | Cite as

Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging

  • V. Alchanatis
  • Y. Cohen
  • S. Cohen
  • M. Moller
  • M. Sprinstin
  • M. Meron
  • J. Tsipris
  • Y. Saranga
  • E. Sela
Article

Abstract

Canopy temperature has long been recognized as an indicator of plant water status, therefore, a high-resolution thermal imaging system was used to map crop water status. Potential approaches for estimating crop water status from digital infrared images of the canopy were evaluated. The effect of time of day on leaf temperature measurements was studied: midday was found to be the optimal time for thermal image acquisition. Comparison between theoretical and empirical approaches for estimating leaf water potential showed that empirical temperature baselines were better than those obtained from energy balance equations. Finally, the effects of angle of view and spatial resolution of the thermal images were evaluated: water status was mapped by using angular thermal images. In spite of the different viewing angles and spatial resolution, the map provided a good representation of the measured leaf water potential.

Keywords

Cotton Leaf water potential Site-specific irrigation Water stress CWSI Infrared thermography Canopy temperature Remote sensing 

Notes

Acknowledgments

This research was supported by Research Grant no. TB-8006-04 from BARD, the United States—Israel Bi-national Agricultural Research and Development Fund, and Grant 458-0361-04 from the Chief Scientist of the Israel Ministry of Agriculture and Rural Development. Also, we would like to thank Mr. R. Brikman and Dr. A. Bosak for their help in conducting the field measurements and image acquisition. This paper is contribution no 70408 from the ARO, Volcani Center, Bet Dagan 50250, Israel.

References

  1. Clarke, T. R. (1997). An empirical approach for detecting crop water stress using multispectral airborne sensors. Horttechnology, 7, 9–16.Google Scholar
  2. Clawson, K. L., Jackson, R. D., & Pinter, P. J. (1989). Evaluating plant water stress with canopy temperature differences. Agronomy Journal, 81, 858–863.Google Scholar
  3. Cohen, Y., Alchanatis, V., Meron, M., Saranga, S., & Tsipris, J. (2005). Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 56, 1843–1852. doi: 10.1093/jxb/eri174.CrossRefPubMedGoogle Scholar
  4. Colaizzi, P. D., Barnes, E. M., Clarke, T. R., Choi, C. Y., & Waller, P. M. (2003). Estimating soil moisture under low-frequency surface irrigation using the CWSI. Journal of Irrigation and Drainage Engineering, 129, 27–35. doi: 10.1061/(ASCE)0733-9437(2003)129:1(27).CrossRefGoogle Scholar
  5. Cornish, K., Radin, J. W., Turcotte, E. L., Lu, Z., & Zeiger, E. (1991). Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiology, 97, 484–489. doi: 10.1104/pp.97.2.484.CrossRefPubMedGoogle Scholar
  6. Ehrler, W. L., Idso, S. B., Jackson, R. D., & Reginato, R. J. (1978). Wheat canopy temperature relation to plant water potential. Agronomy Journal, 70, 251–256.Google Scholar
  7. Evans, D. E., Sadler, E. J., Camp, C. R., Millen, J. A. (2000). Spatial canopy temperature measurements using central pivot mounted IRTs. In P. C. Robert, R. M. Rust, & W. E. Larsen (Eds.), Proceedings of the 5th international conference on precision agriculture. ASA, CSSA, SSSA, Madison, WI., CDROM. Accessed February 15, 2009, from http://www.ars.usda.gov/SP2UserFiles/Place/66570000/Manuscripts/2000/Man580.pdf.
  8. Gates, D. M. (1964). Leaf temperature and transpiration. Agronomy Journal, 56, 273–277.Google Scholar
  9. Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsall, J. (2005). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24, 115–127. doi: 10.1007/s00271-005-0015-7.CrossRefGoogle Scholar
  10. Gonzalez-Dugo, M. P., Moran, M. S., Mateos, L., & Bryant, R. (2006). Canopy temperature variability as an indicator of crop water stress severity. Irrigation Science, 24, 233–240. doi: 10.1007/s00271-005-0022-8.CrossRefGoogle Scholar
  11. Grimes, D. W., & Yamada, H. (1982). Relation of cotton growth and yield to minimum leaf water potential. Crop Science, 22, 134–139.CrossRefGoogle Scholar
  12. Idso, S. B., Jackson, R. D., Pinter, P. J., Jr., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55. doi: 10.1016/0002-1571(81)90032-7.CrossRefGoogle Scholar
  13. Irmak, S., Haman, D. Z., & Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92, 1221–1227.Google Scholar
  14. Jackson, R. D. (1982). Canopy temperature and crop water stress. In D. I. Hillel (Ed.), Advances in irrigation (Vol. 1, pp. 43–85). New York: Academic Press.Google Scholar
  15. Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138. doi: 10.1029/WR017i004p01133.CrossRefGoogle Scholar
  16. Jackson, R. D., Kustas, W. P., & Choudhury, B. J. (1988). A reexamination of the crop water stress index. Irrigation Science, 9, 309–317. doi: 10.1007/BF00296705.CrossRefGoogle Scholar
  17. Jones, H. G. (1992). Plants and microclimate (2nd ed., pp. 231–236). Cambridge, UK: Cambridge University Press.Google Scholar
  18. Jones, H. G. (1999a). Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell and Environment, 22, 1043–1055. doi: 10.1046/j.1365-3040.1999.00468.x.CrossRefGoogle Scholar
  19. Jones, H. G. (1999b). Use of infrared thermometry for estimation of stomatal conductance as possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95, 139–149. doi: 10.1016/S0168-1923(99)00030-1.CrossRefGoogle Scholar
  20. Jones, H. G., Stoll, M., Santos, T., de Saousa, C., Chaves, M. M., & Grant, O. (2002). Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany, 53, 2249–2260. doi: 10.1093/jxb/erf083.CrossRefPubMedGoogle Scholar
  21. Meron, M., Grimes, D. W., Phene, C. J., & Davis, K. R. (1987). Pressure chamber procedures for leaf water potential measurements of cotton. Irrigation Science, 8, 215–222. doi: 10.1007/BF00259382.CrossRefGoogle Scholar
  22. Meron, M., Tsipris, J., & Charitt, D. (2003). Remote mapping of crop water status to assess spatial variability of crop stress. In J. V. Stafford & A. Werner (Eds.), Precision agriculture ‘03: Proceedings of the 4th European conference on precision agriculture (pp. 405–410). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  23. Möller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., et al. (2007). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58, 827–838. doi: 10.1093/jxb/erl115.CrossRefPubMedGoogle Scholar
  24. Naor, A., Klein, I., & Doron, V. (1995). Stem water potential and apple fruit size. Journal of the American Society for Horticultural Science, 120, 577–582.Google Scholar
  25. Stern, R., Meron, M., Naor, A., Gazit, S., Bravdo, B., & Wallach, R. (1998). Effect of autumnal irrigation level in ‘Mauritius’ lychee on soil and plant water status and following year flowering intensity and yield. Journal of the American Society for Horticultural Science, 123, 150–155.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • V. Alchanatis
    • 1
  • Y. Cohen
    • 1
  • S. Cohen
    • 2
  • M. Moller
    • 2
  • M. Sprinstin
    • 3
  • M. Meron
    • 4
  • J. Tsipris
    • 4
  • Y. Saranga
    • 5
  • E. Sela
    • 1
    • 5
  1. 1.Institute of Agricultural Engineering, ARO, The Volcani CenterBet DaganIsrael
  2. 2.Institute of Soil, Water and Environmental Sciences, ARO, The Volcani CenterBet DaganIsrael
  3. 3.The J. Blaustein Institute for Desert ResearchBen-Gurion University of the NegevBeershebaIsrael
  4. 4.Galilee Technology Center, MigalRosh PinnaIsrael
  5. 5.Faculty of AgricultureThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations