Precision Agriculture

, Volume 9, Issue 1–2, pp 85–100 | Cite as

A synthesis of multi-disciplinary research in precision agriculture: site-specific management zones in the semi-arid western Great Plains of the USA

  • R. Khosla
  • D. Inman
  • D. G. Westfall
  • R. M. Reich
  • M. Frasier
  • M. Mzuku
  • B. Koch
  • A. Hornung


Researchers from Colorado State University, in collaboration with scientists from the United States Department of Agriculture (USDA), initiated a long-term multi-disciplinary study in precision agriculture in 1997. Site-specific management zones (SSMZ) were investigated as a means of improving nitrogen management in irrigated maize cropping systems. The objective was to develop precise nutrient management strategies for semi-arid irrigated cropping systems. This study was conducted in five fields in northeastern Colorado, USA. Two techniques for delineating management zones were developed and compared: SSMZ and yield-based management zones (YBMZ). Nitrogen uptake and grain yield differences among SSMZs were compared as were soil properties. Both management zone techniques were used to divide fields into smaller units that were different with regard to productivity potential (e.g., high zones had high productivity potential while low zones had low productivity potential). Economic analysis was also performed. Based on grain yield productivity, the SSMZs performed better than the YBMZ technique in most cases. Grain yield and N uptake between the low and high productivity management zones were statistically different for most site-years and N fertilizer rates (p < 0.05). Soil properties helped to explain the productivity potential of the management zones. The low SSMZ was markedly different from the high SSMZ based on bulk density, organic carbon, sand, silt, porosity and soil moisture. Net returns ranged from 188 to 679 USD ha−1. In two out of three site-years the variable yield goal strategy resulted in the largest net returns. In this study, the SSMZ approach delineates areas of different productivity accurately across the agricultural fields. The SSMZs are different with regard to soil properties as well as grain yield and N uptake. Site-specific management zones are an inexpensive and pragmatic approach to precise N management in irrigated maize.


Management zones Nitrogen fertilizer Variable-rate Net returns Nitrogen-use efficiency 


  1. Bowers, S. A., & Hanks, R. J. (1965). Reflection of radiant energy from soils. Journal of Soil Science, 2, 130–138.Google Scholar
  2. Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). New York, USA: The Guilford Press.Google Scholar
  3. Coleman, T. L., & Montgomery, O. L. (1987). Soil moisture, organic matter and iron content effects on the spectral characteristics of selected vertisols and alfisols of Alabama. Photogrammetric Engineering and Remote Sensing, 53, 1659–1663.Google Scholar
  4. Coleman, T. L., & Tadesse W. (1995). Differentiating soil physical properties from multiple band DOQ data. Journal of Soil Science, 160, 81–91.CrossRefGoogle Scholar
  5. Colvin, T. S., Jaynes, K. B., Karlen, D. L., Laird, D. A., & Ambuel, J. R. (1997). Yield variability within a central Iowa field. Transactions of the American Society of Agricultural Engineers, 40, 883–889.Google Scholar
  6. Cressie, N. (1993). Statistics for spatial data (Rev. ed.). Wiley and Sons, New York, USA.Google Scholar
  7. Delgado, J. A., Ristau, R. J., Dillon, M. A., Duke, H. R., Stuebe, A., Follett, R. F., Shaffer, M. J., Riggenbach, R. R., Sparks, R. T., Thompson, A., Kawanabe, L. M., Kunugi, A., & Thompson, K. (2001). Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations. Communications in Soil Science and Plant Analysis, 32, 1321–1354.CrossRefGoogle Scholar
  8. Dinnes, D. L., Karlen, D. K., Jaynes, D. B., Kaspar, T. C., Hatfield, J. L., Colvin, T. S., & Cambardella, C. A. (2002). Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agronomy Journal, 94, 153–171.CrossRefGoogle Scholar
  9. Doerge, T. (1999). Defining management zones for precision farming. Crop Insight, 8, 1–5.Google Scholar
  10. Donahue, R. L., Miller, R. W., & Shickluna, J. C. (1983). Soils: An introduction to soils and plant growth (5th ed.). New Jersey, USA: Prentice-Hall Inc.Google Scholar
  11. Ferguson, R. B., Gotway, C. A., Hergert, G. W., & Peterson, T. A. (1996). Soil sampling for site-specific nitrogen management. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Precision agriculture. Proceedings of the 3rd International Conference of the ASA, CSSA, and SSSA, Madison, WI, USA.Google Scholar
  12. Fleming, K. L., Heermann, D. F., & Westfall, D. G. (2004). Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agronomy Journal, 96, 1581–1587.CrossRefGoogle Scholar
  13. Fleming, K. L., Westfall, D. G., & Bausch, W. C. (2000). Evaluating management zone technology and grid soil sampling for variable rate nitrogen application. In P.C. Roberts, et al. (Eds.), Proceedings of the 5th International Conference of the ASA, CSSA, and SSSA, Madison, WI, USA.Google Scholar
  14. Fraisse, C. W., Sudduth, K. A., Kitchen, N. R., & Fridgen, J. J. (1999). Use of unsupervised clustering algorithms for delineating within-field management zones. ASAE Paper No. 993043. St. Joseph, MI: American Society of Agricultural Engineers.Google Scholar
  15. Franzen D. W., Hopkins, D. H., Sweeney, M. D., Ulmer, M. K., & Halvorson, A. D. (2002). Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agronomy Journal, 94, 381–389.CrossRefGoogle Scholar
  16. Fridgen, J. J., Kitchen, N. R., & Sudduth, K. A. (2000). Variability of soil and landscape attributes within sub-field management zones. In P. C. Roberts, et al. (Eds.), Precision agriculture. Proceedings of the 5th International Conference of the ASA, CSSA, and SSSA, Madison, WI, USA.Google Scholar
  17. Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis, Part I (pp. 404–408). Madison, WI, USA: American Society of Agronomy.Google Scholar
  18. Gotway, C. A., Fergusun, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparison of kriging and inverse-distance methods for mapping soil parameters. Journal of the Soil Science Society of America, 60, 1237–1247.CrossRefGoogle Scholar
  19. Hoag, D., & Vandenberg, B. (2003). Profit and loss enterprise budget generator. Release 2.0 [Online]. Available at (verified 17 October 2007). Fort Collins: Colorado State Univ. and USDA-ARS Northern Plains Area.
  20. Hornung, A., Khosla, R., Reich, R. M., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: soil-color based and yield-based. Agronomy Journal, 98, 407–415.CrossRefGoogle Scholar
  21. Inman, D. J., Freeland, R. S., Ammons, J. T., & Yoder, R. E. (2002). Soil investigations using electromagnetic induction and ground-penetrating radar in Southwest Tennessee. Journal of the Soil Science Society of America, 66, 206–211.CrossRefGoogle Scholar
  22. Inman, D., Khosla, R., Frasier, W. M., Westfall, D. G., & Koch, B. (2007). Profitability of site-specific nitrogen management strategies across soil color-based management zones. In J. V. Stafford (Ed.), Precision agriculture ‘07. Wagenigen, The Netherlands: Wagenigen Academic Publishers.Google Scholar
  23. Inman, D., Khosla, R., & Westfall, D. G. (2005). Nitrogen uptake across site-specific management zones in irrigated corn production systems. Agronomy Journal, 97, 169–176.CrossRefGoogle Scholar
  24. Jaynes, D. B., Hatfield, J. L., & Meek, D. W. (1999). Water quality in Walnut Creek watershed: Herbicides and nitrate in surface waters. Journal of Environmental Quality, 28, 45–59.Google Scholar
  25. Johnson, C. K., Doran, J. W., Duke, H. R., Wienhold, B. J., Eskridge, K. M., & Shanahan, J. F. (2001). Field-scale electrical conductivity mapping for delineating soil condition. Journal of the Soil Science Society of America, 65, 1829–1837.CrossRefGoogle Scholar
  26. Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 95, 303–315.CrossRefGoogle Scholar
  27. Khosla, R., & Alley, M. M. (1999). Soil-specific nitrogen management on Mid-Atlantic Coastal Plain soils. Better Crops, 83, 6–7.Google Scholar
  28. Khosla R., Fleming, K. L., Delgado, J. A., Shaver, T. M., & Westfall, D. G. (2002). Use of site-specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation, 57, 513–518.Google Scholar
  29. Kitchen, N. R., Hughes, D. F., Sudduth, K. A., & Birrell, S. J. (1995). Comparisons of variable rate to single rate nitrogen fertilizer application: Corn production and residual soil NO3-N. In P. C. Roberts, et al. (Eds.), Site-specific management for agricultural systems. Proceedings of the 2nd International Conference on Precision Agriculture, 27–30 March 1994, Minneapolis, MN. Madison, WI: ASA.Google Scholar
  30. Koch, B., Khosla, R., Frasier, M., Westfall, D. G., & Inman, D. (2004). Economic feasibility of variable rate nitrogen application utilizing site-specific management zones. Agronomy Journal, 96, 1572–1580.CrossRefGoogle Scholar
  31. Kravenchenko, A. N., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92, 75–83.CrossRefGoogle Scholar
  32. Lamb, J. A., Anderson, J. L., Rehm, G. W., & Dowdy, R. H. (1996). Grain yield stability in continuous corn and corn-soybean cropping systems on a sandy landscape. In P.C. Roberts, et al. (Eds.), Precision agriculture. Proceedings of the 3rd International Conference, 23–26 June 1996, Bloomington, MN (pp. 417–424). Madison, WI: ASA, CSSA, and SSA.Google Scholar
  33. Landis, R. J., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.CrossRefGoogle Scholar
  34. Lobell, D. B., & Asner, G. P. (2002). Moisture effects on soil reflectance. Journal of the Soil Science Society of America, 66, 722–727.CrossRefGoogle Scholar
  35. Luchiari, A., Shanahan, J., Francis, D., Schlemmer, M., Schepers, J., Liebig, M., Schepers, A., & Payton, S. (2000). Strategies for establishing management zones for site specific nutrient management. In P. C. Roberts, et al. (Eds.), Precision agriculture. Proceedings of the 5th International Conference of the ASA, CSSA, and SSSA, Madison, WI, USA.Google Scholar
  36. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281–297). Berkeley: University of California Press.Google Scholar
  37. Mamo, M, Malzer, G. L., Mulla, D. J., Huggins, D. R., & Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal, 95, 958–964.CrossRefGoogle Scholar
  38. Mielke, P. W. Jr. (1991). The application of multivariate permutation methods based on distance functions in the earth sciences. Earth-Science Reviews, 31, 55–71.CrossRefGoogle Scholar
  39. Mortvedt, J. J., Westfall, D. G., & Croissant, R. L. (1996). Fertilizer suggestions for corn. Colorado State University Cooperative Extension, Service in Action. No. 0.538. Fort Collins, USA: Published by Colorado State University.Google Scholar
  40. Mulla, D. J., & Bhatti, A. U. (1997). An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. In J. V. Stafford (Ed.), Precision agriculture ‘97, Proceedings of the 1st European Conference on Precision Agriculture (pp. 145–153). Oxford, UK: BIOS Scientific Publishers.Google Scholar
  41. Mzuku, M, Khosla, R., Reich, R., Inman, D., Smith, F., & MacDonald, L. (2005). Spatial variability of measured soil properties across soil color-based management zones. Soil Science Society of America Journal, 69, 1572–1579.CrossRefGoogle Scholar
  42. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis, chemical methods (pp. 961–1010). Madison WI, USA: American Society of Agronomy.Google Scholar
  43. Neter, J., Kunter, M. H, Nachtscheim, C. J., & Wasserman, W. (1996). Applied linear regression models (3rd ed.), McGraw-Hill/Irwin Publishers.Google Scholar
  44. Nolan, S. C., Goddard, T. W., & Lohstraeter, G. (2000). Assessing management units on rolling topography. In P. C. Robert et al. (Ed.), Precision agriculture. Proc. Int. Conf., 5th, Bloomington, MN. 16–19. July 2000. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
  45. Pilesjö, P., Thylén, L., & Persson, A. (2005). Topographical data for delineation of agricultural management zones. In J. V. Stafford (Ed.), Precision Agriculture ‘05. Proceedings of the 5th European Conference on Precision Agriculture (pp. 819–826). Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
  46. Randall, G. W., Huggins, D. R., Russelle, M. P., Fuchs, D. J., Nelson, W. W., & Anderson, J. L. (1997). Nitrate losses through subsurface tile drainage in conservation reserve program, alfalfa, and row crop systems. Journal of Environmental Quality, 26, 1240–1247.CrossRefGoogle Scholar
  47. Ray, S. S., Singh, J. P., Das, G., & Panigrahy, S. (2004). Use of high resolution remote sensing data for generating site-specific soil management plan. International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Science, XXXV-B7, 127–132.Google Scholar
  48. Sawyer, J. E. (1994). Concepts of variable rate technology with considerations for fertilizer application. Journal of Production Agriculture, 7, 195–201.Google Scholar
  49. Stafford, J. V., Clark, R. M., & Bolam, H. C. (1998). Using yield maps to regionalize fields into potential management units. In P.C. Roberts et al. (Ed.), Precision agriculture. Proceedings of the 4th International Conference, 19–22 July 1998, St. Paul, MN. Madison, WI: ASA, CSSA, and SSA.Google Scholar
  50. Weed, D. A. J., & Kanwar, R. S. (1996). Nitrate and water present in and flowing from root-zone soil. Journal of Environmental Quality, 25, 709–719.Google Scholar
  51. Yang, C., Anderson, G. L., Everitt, J. H., & Escobar, D. E. (1998). Mapping plant growth and yield variations from aerial digital videography. In Proceedings of the 1st International Conference on Geospatial Information in Agriculture and Forestry, 1–3 June 1998, LakeBuena Vista, FL (Vol. 2, pp. 577–586). Ann Arbor, MI: ERIM International Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Khosla
    • 1
  • D. Inman
    • 2
  • D. G. Westfall
    • 1
  • R. M. Reich
    • 3
  • M. Frasier
    • 4
  • M. Mzuku
    • 1
  • B. Koch
    • 1
  • A. Hornung
    • 1
  1. 1.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  2. 2.National Bioenergy CenterNational Reneweable Energy LabGoldenUSA
  3. 3.Department of Forest, Rangeland and Watershed StewardshipColorado State UniversityFort CollinsUSA
  4. 4.Department of Agricultural and Resource EconomicsColorado State UniversityFort CollinsUSA

Personalised recommendations