Precision Agriculture

, Volume 9, Issue 3, pp 173–175 | Cite as

Variogram or semivariogram? Understanding the variances in a variogram

  • Martin Bachmaier
  • Matthias Backes
Short Discussion

The theoretical variogram and the confusion in the literature

The definition of the theoretical variogram, γ, is based on regionalized random variables \(Z(\vec {x})\)


Stein Spatial Variability Prefix Yield Data Spatial Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bachmaier, M. (2007). Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield mapping using robust fitting paraboloid cones. Precision Agriculture, 8, 75–93.CrossRefGoogle Scholar
  2. Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems. Spatial information systems and geostatistics. Oxford, New York: Oxford University Press.Google Scholar
  3. Cressie, N. A. C. (1991). Statistics for spatial data. New York: Wiley.Google Scholar
  4. Gneiting, T., Sasvári, Z., & Schlather, M. (2001). Analogies and correspondences between variograms and covariance functions. Advances in Applied Probability, 33, 617–630.CrossRefGoogle Scholar
  5. Goovaerts, P. (1997). Geostatistics for natural resource evaluation. Oxford, New York: Oxford University Press.Google Scholar
  6. Gringarten, E., & Deutsch, C. V. (2001). Teacher’s aide—variogram interpretation and modeling. Mathematical Geology, 33, 507–534.CrossRefGoogle Scholar
  7. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford, New York: Oxford University Press.Google Scholar
  8. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.Google Scholar
  9. Matheron, G. (1965). Les Variables régionalisées et leur Estimation. Paris: Masson.Google Scholar
  10. Olea, R. A. (1999). Geostatistics for engineers and earth scientists. Boston: Kluwer Academic Publishers.Google Scholar
  11. Stein, M. L. (1999). Interpolation of spatial data—some theory for kriging. New York: Springer Verlag.Google Scholar
  12. Wackernagel, H. (2003). Multivariate geostatistics. Berlin, Heidelberg: Springer Verlag.Google Scholar
  13. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. New York: Wiley.Google Scholar
  14. Worboys, M. F. (1995). GIS—a computing perspective. London: Taylor & Francis Ltd.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Life Science Engineering, Crop Production EngineeringTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Institut für Kartographie und GeoinformationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations