Precision Agriculture

, Volume 8, Issue 4–5, pp 241–252 | Cite as

Active remote sensing and grain yield in irrigated maize

  • D. Inman
  • R. Khosla
  • R. M. Reich
  • D. G. Westfall
Article

Abstract

Advances in agricultural technology have led to the development of active remote sensing equipment that can potentially optimize N fertilizer inputs. The objective of this study was to evaluate a hand-held active remote sensing instrument to estimate yield potential in irrigated maize. This study was done over two consecutive years on two irrigated maize fields in eastern Colorado. At the six- to eight-leaf crop growth stage, the GreenSeeker™ active remote sensing unit was used to measure red and NIR reflectance of the crop canopy. Soil samples were taken before side-dressing from the plots at the time of sensing to determine nitrate concentration. Normalized difference vegetation index (NDVI) was calculated from the reflectance data and then divided by the number of days from planting to sensing, where growing degrees were greater than zero. An NDVI-ratio was calculated as the ratio of the reflectance of an area of interest to that of an N-rich portion of the field. Regression analysis was used to model grain yield. Grain yields ranged from 5 to 24 Mg ha−1. The coefficient of determination ranged from 0.10 to 0.76. The data for both fields in year 1 were modeled and cross-validated using data from both fields for year 2. The coefficient of determination of the best fitting model for year 1 was 0.54. The NDVI-ratio had a significant relationship with observed grain yield (r2 = 0.65). This study shows that the GreenSeeker™ active sensor has the potential to estimate grain yield in irrigated maize; however, improvements need to be made.

Keywords

GreenSeeker Active sensor NDVI Grain yield Maize 

References

  1. Aparicio, N., Villegas, D., Araus, J. L., Casadesús, J., & Royo, C. (2002). Relationship between growth traits and spectral vegetation indices in Durum Wheat. Crop Science, 42, 1547–1555.CrossRefGoogle Scholar
  2. Báez-González, A. D., Chen, P., Tiscareño-López, M., & Srinivasan, R. (2002). Using satellite and field data with crop growth modeling to monitor and estimate maize yield in Mexico. Crop Science, 42, 1943–1949.CrossRefGoogle Scholar
  3. Bausch, W. C., & Duke, H. R. (1996). Remote sensing of plant nitrogen status in corn. Transactions of the American Society Agricultural Engineers, 39(6), 1869–1875.Google Scholar
  4. Bausch, W. C., & Diker, K. (2001). Innovative remote sensing techniques to increase nitrogen use efficiency of corn. Communications in Soil Science and Plant Analysis, 32(7 & 8), 1371–1390.CrossRefGoogle Scholar
  5. Blackmer, T. M., Schepers, J. S., & Varvel, G. E. (1994). Light reflectance compared with other nitrogen stress measurements in maize leaves. Agronomy Journal, 86, 934–938.CrossRefGoogle Scholar
  6. Bundy, L. G., & Andraski, T. W. (1993). Soil and plant nitrogen availability tests for corn following alfalfa. Journal of Production Agriculture, 6, 200–206.Google Scholar
  7. Bundy, L. G., & Andraski, T. W. (1995). Soil yield potential effects on performance of soil nitrate tests. Journal of Production Agriculture, 8, 561–568.Google Scholar
  8. Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). New York, USA: The Guilford Press.Google Scholar
  9. Dwyer, L. M., Stewart, D. W., Carrigan, L., Ma, B. L., Weaver, P., & Balchini, D. (1999). Guidelines for comparisons among different maize maturity rating systems. Agronomy Journal, 91, 946–949.CrossRefGoogle Scholar
  10. Ercoli, L., Mariotti, M., Masom, A., & Massantini, F. (1993). Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. European Journal of Agronomy, 2, 113–117.Google Scholar
  11. Gauch, H. G., & Zobel, R. W. (1988). Predictive and postdictive success of statistical analysis of yield trials. Theoretical Genetics, 76, 1–10.CrossRefGoogle Scholar
  12. Heckman, J. R., Hlubik, W. T., Prostak, D. J., & Paterson, J. W. (1995). Pre-sidedress soil nitrate test for sweet corn. Horticultural Science, 30, 1033–1036.Google Scholar
  13. Inman, D., Khosla, R., & Mayfield, T. (2005). On-the-go active remote sensing for efficient crop nitrogen management. Sensor Review Journal, 25(3), 209–214.CrossRefGoogle Scholar
  14. Large, E. C. (1954). Growth stages in cereals. Journal of Plant Pathology, 3, 128–129.CrossRefGoogle Scholar
  15. Ma, B. L., Lianne, L. M., Dwyer, M., Costa, C., Cober, E. R., & Morrison, M. J. (2001). Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal, 93, 1227–1234.CrossRefGoogle Scholar
  16. Magdoff, F. R., Ross, D., & Amadon, J. (1984). A soil test for nitrogen availability to maize. Soil Science Society of America Journal, 48, 1301–1304.CrossRefGoogle Scholar
  17. Magdoff, F. R. (1991). Understanding the Magdoff pre-sidedress nitrate test for corn. Journal of Production Agriculture, 4, 297–305.Google Scholar
  18. Meisinger, J. J., Bandel, V. A., Angle, J. S., O’Keefe, B. E., & Reynolds, C. M. (1992). Pre-sidedress soil nitrate test evaluation in Maryland. Soil Science Society of America Journal, 56, 1527–1532.CrossRefGoogle Scholar
  19. Mulvaney, R. L. (1996). Nitrogen-inorganic forms. In D. L. Sparks et al (Eds.), Methods of soil analysis. Part 3, Chemical methods, Chapter 4 (pp 1146–1162). Madison, WI: Soil Science Society of America.Google Scholar
  20. Neter, J., Kunter, M. H., Nachtscheim, C. J., & Wasserman, W. (1996). Applied linear regression models (4th ed.). Chicago, Il USA: McGraw-Hill/Irwin publishers.Google Scholar
  21. NUE Web 2005. Outline for generating new crop algorithms for N fertilization. Available at: http://www.nue.okstate.edu/Algorithm/Algorithm_Outline.htm. Verified December 12, 2005. Oklahoma State University, Stillwater, OK, USA.
  22. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.CrossRefGoogle Scholar
  23. Raun, W. R., Soile, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., & Schepers, J. S. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93, 131–138.CrossRefGoogle Scholar
  24. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., Thomasson, W. E., & Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.CrossRefGoogle Scholar
  25. Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., Zhang, H., Scheppers, J. S., & Johnson, G. V. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36, 2759–2781.CrossRefGoogle Scholar
  26. Rozas, H. S., Echeverría, H. E., Studdert, G. A., & Domínguez, G. (2000). Evaluation of the pre-sidedress soil nitrogen test for no-tillage maize fertilized at planting. Agronomy Journal, 92, 1176–1183.CrossRefGoogle Scholar
  27. SAS Institute (2001). Statistical analysis software version 8. Cary, NC, USA: SAS Institute.Google Scholar
  28. Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., & Resende, M. (1996). Transmittance and reflectance measurements of maize leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148, 523–529.Google Scholar
  29. Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., Schlemmer, M. R., & Major, D. J. (2001). Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 93, 583–589.CrossRefGoogle Scholar
  30. Spellman, D. E., Rongni, A., Westfall, D. G., Waskom, R. M., & Soltanpour, P. N. (1996). Pre-sidedress nitrate soil testing to manage nitrogen fertility in irrigated corn in a semi-arid environment. Communications in Soil Science and Plant Analysis, 27(3&4), 561–574.CrossRefGoogle Scholar
  31. Stone, M. L., Soile, J. B., Raun, W. R., Whitney, R. W., Taylor, S. L., & Ringer, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the American Society of Agricultural Engineers, 39(5), 1623–1631.Google Scholar
  32. Thenkabail, P. S., Smith, R. B., & DePauw, E. (2000). Hyperspectral Vegetation Indicies and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.CrossRefGoogle Scholar
  33. Vleeshouwers, L. M., & Jongschaap, R. E. E. (2001). Chlorophyll and nitrogen relations in maize with regards to spectral properties: forcing methods of remote sensing data in crop growth simulation models. Deliverable D06 EU Croma (EVG1–2000–000027). Available online: http://library.wur.nl/wasp/bestanden/LUWPUBRD_00121626_A502_001.pdf. Verified 08/30/2007.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Inman
    • 1
  • R. Khosla
    • 1
  • R. M. Reich
    • 2
  • D. G. Westfall
    • 1
  1. 1.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  2. 2.Department of Forest, Rangeland, and Watershed StewardshipColorado State UniversityFort CollinsUSA

Personalised recommendations