Precision Agriculture

, Volume 7, Issue 5, pp 309–326 | Cite as

Evaluation of the soil penetration resistance along a transect to determine the loosening depth

  • H. Domsch
  • D. Ehlert
  • A. Giebel
  • K. Witzke
  • J. Boess
Original Paper


The objective of this study was to evaluate the distribution of soil strength (measured as cone index, CI) along a 600 m transect and to determine the soil loosening depth necessary to eliminate zones with soil strengths exceeding a threshold value down to a depth of 0.6 m. The transect was located at a site in a glacial drift area which was characterised by sandy deposits overlying boulder clay. A tractor-mounted multi-penetrometer array consisting of four hydraulically driven single vertical penetrometers was used to determine CI at 1-m sampling intervals as a measure of penetration resistance. The spatial fluctuation of the CI readings in general and that of repeatedly averaged readings along the transect was examined. Furthermore, the relationships between the penetration resistance of several soil layers and the relationships between the CI of single penetrometers were identified. Averaged CI values over 5-m intervals were used to determine the depth of soil loosening required. By using various data sub-sets based on the averaged data of the four array mounted penetrometers and simulating several different sampling intervals, treatment intervals and threshold values of soil strength, a sampling interval of about 10 m proved to be sufficiently accurate to determine the loosening depth required.


Soil strength Cone index Site-specific soil loosening Penetrometer Sampling interval Soil layers 



The authors thank the ATB staff members U. Frank, M. Heisig, H.-J. Horn, and S. Kraatz for assisting the investigations in many ways. Furthermore, thanks goes to W. B. Herppich for helpful comments on an early draft of this paper.


  1. Anon (1994). Bodenkundliche Kartieranleitung (Soil survey instruction), edited by Bundesanstalt für Geowissenschaften und Rohstoffe und den geologischen Landesämtern in der Bundesrepublik Deutschland. (Stuttgart, Germany: Schweizerbart´sche Verlagsbuchhandlung).Google Scholar
  2. Ayers, P. D. & Perumpral, J. V. (1982). Moisture and density effect on cone index. ASAE paper No. 81-1047.Google Scholar
  3. Busscher, W. J., Bauer, P. J., Camp, C. R., & Sojka, R. E. (1997). Correction of cone index for soil water content differences in a coastal plain soil. Soil and Tillage Research, 43(3–4), 205–217.CrossRefGoogle Scholar
  4. Busscher, W. J., Frederick, J. R., & Bauer, P. J. (2001). Effect of penetration resistance and timing of rain on grain yield of narrow-row corn in a coastal plain loamy sand. Soil and Tillage Research, 63(1–2), 15–24.CrossRefGoogle Scholar
  5. Clark, R.L. (1999). Soil strength variability within fields. In: J. V. Stafford, (eds), Precision Agriculture ‘99: Proceedings of the second European conference on precision agriculture, (pp. 771–779). Sheffield, UK: Sheffield Academic Press.Google Scholar
  6. DASYLab 1999: DASYLab® 5.0. Programmbeschreibung (Program characterisation) (Mönchengladbach, Germany: Datalog®GmbH&Co.KG).Google Scholar
  7. Domsch, H., & Adamek, R. (1998). Ermittlung der räumlichen Heterogenität des Bodengefüges mit einem Penetrometer auf einem Sandstandort (Determination of the spatial heterogeneity of the soil structure with a penetrometer at a sand location). Agrartechnische Forschung, 4(1), 81–90.Google Scholar
  8. Drummond, P. E., Christy, C. D., & Lund, E. D. (2000). Using an automated penetrometer and soil EC probe to characterize the rooting zone. Proceedings of the fifth international conference on precision agriculture. CD, Bloomington, Minnesota, USA: Division Engineering Technology.Google Scholar
  9. Ehlers, W., Kopke, U., Hesse, F., & Böhm, W. (1983). Penetration resistance and root-growth of oats in tilled and untilled loess soil. Soil and Tillage Research, 3(3), 261–275.CrossRefGoogle Scholar
  10. Elbanna, E. B., & Witney B. D. (1987). Cone penetration resistance equation as a function of the clay ratio, soil-moisture content and specific weight. Journal of Terramechanics, 24(1), 41–56.CrossRefGoogle Scholar
  11. Elghamry, W., & Elashkar, M. (1962). Simplified textural classification triangles. Soil Science Society of America Proceedings 43, 1004–1007 cited in Sumner, M. E. (Ed.). (2000). Handbook of soil science (Boca Raton, London, New York, Washington, DC: CRC Press).Google Scholar
  12. Hernanz, J.L., Peixoto, H., Cerisola, C., & Sánchez-Girón, V. (2000). An empirical model to predict soil bulk density profiles in field conditions using penetration resistance, moisture content and soil depth. Journal of Terramechanics, 37, 167–184.CrossRefGoogle Scholar
  13. Horn, R. (1984). Die Vorhersage des Eindringwiderstandes von Böden anhand von multiplen Regressionsanalysen (The prediction of the penetration resistance of soils by multiple regression analysis). Z. f. Kulturtechnik und Flurbereinigung, 25, 377–380.Google Scholar
  14. Horn, R., Stork, J., & Dexter, A. R. (1987). Untersuchungen über den Einfluss des Bodengefüges für den Eindringwiderstand in Böden (Investigations related to the influence of soil structure on penetration resistance in soils). Z. Pflanzenernähr. Bodenk., 150, 342–347.Google Scholar
  15. Hummel, J. W., Ahmad, I. S., Newman, S. C., Sudduth, K. A., & Drummond, S. T. (2004). Simultaneous soil moisture and cone index measurement. Transactions of the ASAE, 47(3), 607–618.Google Scholar
  16. Lapen, D. R., Topp, G. C., Edwards, M. E., Gregorich, E. G., & Curnoe, W.E. (2004). Combination cone penetrometer resistance/water content instrumentation to evaluate cone penetration-water content relationships in tillage research. Soil and Tillage Research, 79, 51–62.CrossRefGoogle Scholar
  17. Lipiec, J., Arvidsson, J., & Murer, E. (2003). Review of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction. Soil and Tillage Research, 73(1–2), 15–29.CrossRefGoogle Scholar
  18. Mapfumo, E., & Chanasyk, D. S. (1998). Guidelines for safe trafficking and cultivation, and resistance–density–moisture relations of three disturbed soils from Alberta. Soil and Tillage Research, 46, 193–202.CrossRefGoogle Scholar
  19. Perumpral, J. V. (1987). Cone penetrometer applications – a review. Transactions of the ASAE, 30(4), 939–944.Google Scholar
  20. Smith, C. W., Johnson, M. A., & Lorentz, S. (1997). The effect of soil compaction and soil physical properties on the mechanical resistance of South African forestry soils. Geoderma, 78, 93–111.CrossRefGoogle Scholar
  21. SPSS (1998). SPSS® Base 8.0 Applications Guide. SPSS Inc.Google Scholar
  22. Vaz, C. M. P., & Hopmans, J. W. (2001). Simultaneous measurement of soil penetration resistance and water content with a combined penetrometer-TDR moisture probe. Soil Science Society of America Journal, 65(1), 4–12.CrossRefGoogle Scholar
  23. Yasin, M., Grisso, R. D., Bashford, L., Jones, A. J., Mielke, L. N. (1993). Normalizing cone resistance values by covariance analysis. Transactions of the ASAE, 36(5), 1267–1270.Google Scholar
  24. Young, G. D.(Joe), Adams, B. A., & Topp, G. C. (2000). A portable data collection system for simultaneous cone penetrometer force and volumetric soil water content measurements. Canadian Journal of Soil Science, 80(1), 23–31.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. Domsch
    • 1
  • D. Ehlert
    • 1
  • A. Giebel
    • 1
  • K. Witzke
    • 1
  • J. Boess
    • 2
  1. 1.Leibniz Institute of Agricultural Engineering Bornim (ATB)PotsdamGermany
  2. 2.Geological survey of Lower Saxony (NLfB)HannoverGermany

Personalised recommendations