Precision Agriculture

, Volume 6, Issue 2, pp 167–181

Mapping Potential Crop Management Zones within Fields: Use of Yield-map Series and Patterns of Soil Physical Properties Identified by Electromagnetic Induction Sensing

  • J. A. King
  • P. M. R. Dampney
  • R. M. Lark
  • H. C. Wheeler
  • R. I. Bradley
  • T. R. Mayr
Article

Abstract.

Investment in precision farming technologies can be expensive and is not expected to be cost-effective for every farm. Previous research and farm experience has shown that the amount of soil variability across a farm and within a field is of key importance for determining potential benefits from the adoption of precision farming. The research reported here evaluates the analysis of yield map sequences and electromagnetic induction (EMI) soil sensing as potentially cost-effective methods for identifying and mapping soil-determined “management zones” within fields. Both methods are shown to provide useful information for the provisional delineation of soil type boundaries and crop management zones, though soil examination in the field is still necessary to confirm specific soil characteristics.

Keywords

yield maps cluster analysis EMI sensing soil properties management zones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson-Cook, C.M, Alley, MM, Roygard, JKF, Khosla, R, Noble, RB, Doolittle, JA 2002Differentiating soil types using electromagnetic conductivity and crop yield mapsSoil Science Society of America Journal.6615621570Google Scholar
  2. Avery, BW, Bascomb, CL 1982Soil Survey Laboratory Methods. Soil Survey Technical Monographs No. 6. Rothamsted Experimental StationLawes Agricultural TrustHarpenden, Herts., UKGoogle Scholar
  3. Beckett, P. H. T., Webster, R. 1971Soil variability – a reviewSoils and Fertilizers.34115Google Scholar
  4. Bobert, J., Schmidt, F. and Gebbers, R. 2001. Estimating soil moisture distribution for crop management with capacitance probes, EM-38 and digital terrain analysis. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 349–354. Google Scholar
  5. Brevik, E. C., Fenton, T. E. 2002Influence of soil water content, clay, temperature, and carbonate minerals on electrical conductivity readings taken with an EM-38Soil Survey Horizons.43913Google Scholar
  6. Clay, D. E., Chang, J., Malo, D. D., Carlson, C. G., Reese, C., Clay, S. A., Ellsbury, M., Berg, B. 2001Factors influencing spatial variability of soil apparent electrical conductivityCommunications in Soil Science and Plant Analysis.3229933008Google Scholar
  7. Cressie, N., Hawkins, D. 1980Robust estimation of the variogramMathematical Geology.12115125Google Scholar
  8. Dalgaard, M., Have, H. and Nehmdahl H. 2001. Soil clay mapping by measurement of electromagnetic conductivity. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. ( Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), 367–372. Google Scholar
  9. Dowd, P. A. 1984. The variogram and kriging: Robust and resistant estimators. In: Geostatistics for Natural Resources Characterization. Part 1, edited by Verly, G., David, M. Journel, A. G. and Marechal, A. (D. Reidel, Dordrecht), 91–106. Google Scholar
  10. Genton, M. G. 1998Highly robust variogram estimationMathematical Geology30213221Google Scholar
  11. Godwin, R. J., Earl, R., Taylor, J. C., Wood, G. A., Bradley, R. I., Welsh, J. P., Richards, T., Blackmore, B. S., Carver, M. J., Knight, S. and Welti, B. 2002. ‘Precision farming’ of cereal crops: A five year experiment to develop management guidelines. (HGCA Project Report No. 267, London, UK). 35p. http://www.hgca.co.uk/ Google Scholar
  12. Grenzendorffer, G. J. and Gebbers, R. I. B. 2001. Seven years of yield mapping – analysis and possibilities of multi year yield mapping data. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier G. and Blackmore S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 31–36. Google Scholar
  13. Johnson, C. K., Doran, J. W., Duke, H. R., Wienhold, B. J., Eskridge, K. M., Shanahan, J. F. 2001Field-scale electrical conductivity mapping for delineating soil conditionSoil Science Society of America Journal6518291837Google Scholar
  14. King, J. A. and Dampney, P. M. R. (1999). The potential of remote sensing technologies for measuring soil parameters: A scientific review and R&D recommendations. Report to Ministry of Agriculture Fisheries and Food, UK. Project No. CE0164. Defra, London, SW1P 3JR.Google Scholar
  15. King, J. A., Dampney, P. M. R. 2000Electro-Magnetic Induction (EMI) for measuring soil properties Aspects of Applied BiologyRemote sensing in agriculture60247252Google Scholar
  16. King, J. A., Dampney, P. M. R., Lark, M., Mayr, T. R. and Bradley, R. I. 2001. Sensing soil spatial variability by electro-magnetic induction (EMI): Its potential in precision farming. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 419–424. Google Scholar
  17. King, J. A., Dampney, P. M. R., Lark, R. M., Wheeler, H. C., Bradley, R. I., Mayr, T. R. and Russill, N. 2003. Evaluation of non-intrusive sensors for measuring soil physical properties. (HGCA Project Report No. 302, London, UK). 98p. http://www.hgca.com/publications/documents/cropresearch/302_complete_final_report.pdf (accessed 11th August 2004).Google Scholar
  18. Lark, R. M. 2000aRegression analysis with spatially autocorrelated error: Examples with simulated data and from mapping of soil water contentInternational Journal of Geographical Information Science.14247264Google Scholar
  19. Lark, R. M. 2000bA comparison of some robust estimators of the variogram for use in soil surveyEuropean Journal of Soil Science.51137157Google Scholar
  20. Lark, R. M. 2001Some tools for parsimonious analysis and interpretation of within-field variationSoil and Tillage Research.5899111Google Scholar
  21. Lark, R. M., Wheeler, H. C., Bradley, R. I., Mayr, T. and Dampney, P. M. R. 2003. Developing a cost-effective procedure for investigating within-field variation of soil conditions. (HGCA Project Report No. 296, London, UK). 163p. http://www.hgca.com/publications/documents/cropresearch/296Final_Report.pdf (accessed 11th August 2004). Google Scholar
  22. Lück, E. and Eisenreich, M. 2001. Electrical conductivity mapping for precision agriculture. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 425–429. Google Scholar
  23. Matheron, G. 1962. Traité de Géostatistique Appliqué, Tome 1, (Treatise of Applied Geostatistics, Volume 1). Memoires du Bureau de Recherches Géologiques et Minères, Paris.Google Scholar
  24. McNeill, JD 1980Electrical conductivity of soil and rocks Technical Note TN-5Geonics Ltd.Mississauga, ON, CanadaGoogle Scholar
  25. Mayr, T., Jarvis, N. and Simota, C. 1999. Pedotransfer Functions for Soil Water Retention Characteristics. In: Proceeding of the International Workshop Characterisation and Measurement of the Hydraulic Properties of Unsaturated Porous Media, Riverside, CA. USA. 22–24 October 1998. pp. 993–998. Google Scholar
  26. Neudecker, E., Schmidhalter, U., Sperl, C. and Selige, T. 2001. Site-specific soil mapping by electromagnetic induction. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 271–276. Google Scholar
  27. Roubens, M. 1982Fuzzy clustering algorithms and their cluster validityEuropean Journal of Operational Research.10294301Google Scholar
  28. Schmidhalter, U., Zintel, A. and Neudecker, E. 2001. Calibration of electromagnetic induction measurements to survey the spatial variability of soils. In: Proceedings of the Third European Conference on Precision Agriculture, edited by Grenier, G. and Blackmore, S. (Agro Montpellier, Ecole Nationale Supérieure Agronomique, France), pp. 479–484. Google Scholar
  29. Stafford, J. V., Ambler, B., Lark, R. M., Catt, J. 1996Mapping and interpreting yield variation in cereal cropsComputer and Electronics in Agriculture.14101119Google Scholar
  30. Steven, M. D. and Millar, C. 1997. Satellite monitoring for precision farm decision support. In: Precision Agriculture’97. Proceedings of the 1st European Conference on Precision Agriculture. Volume II Technology IT and Management, edited by J. V. Stafford. (BIOS Scientific, Publishers. Oxford, UK) pp. 697–704. Google Scholar
  31. Sylvester-Bradley, R., Lord, E., Sparkes, D. I., Scott, R. K., Wiltshire, J. J. J., Orson, J. 1999An analysis of the potential of precision farming in Northern EuropeSoil Use and Management.1518Google Scholar
  32. Williams, B. G., Hoey, D. 1987The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soilsAustralian Journal of Soil Research252127Google Scholar
  33. Wright, P. S. (1987). Soils in Bedfordshire 1: Sheet TL14 (Biggleswade). Soil Survey Record No. 110. Publ. Soil Survey, Harpenden, UK. 1987.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J. A. King
    • 1
  • P. M. R. Dampney
    • 1
  • R. M. Lark
    • 2
  • H. C. Wheeler
    • 2
  • R. I. Bradley
    • 3
  • T. R. Mayr
    • 3
  1. 1.ADAS BoxworthCambridgeUK
  2. 2.Silsoe Research InstituteBedfordshireUK
  3. 3.National Soil Resources InstituteCranfield Univ.BedfordshireUK

Personalised recommendations