Precision Agriculture

, Volume 5, Issue 6, pp 625–645

Field-Scale Experiments for Site-Specific Crop Management. Part II: A Geostatistical Analysis

Article

Abstract

Part II analyses approach C experiments. Field-scale experiments were applied to four wheat fields in the Western Australian wheat belt. Different experimental designs were used two two-dimensional sine-waves, a chequerboard, and a two-factor strip arrangement. In each experiment, the yield associated with a particular treatment was predicted by kriging to where the other treatments were located. Different forms of kriging were investigated. Co-located cokriging, using the previous-season yield map as a covariate, was the most promising. The kriged data were then modelled with polynomial yield response functions. The outcome was a map for each field that described the optimum application of experimental input. The requirements varied continuously across the field, and could justify future site-specific crop management. The two-factor strip experiment was the most successful of those presented; the field on which it was used showed relatively strong responses to the applied inputs. The other sites were affected by lack of rain and/or design flaws. The underlying philosophy is sound, but the method proposed is time-consuming and inefficient. We hope that this paper can stimulate further research on the subject.

Keywords

site-specific crop management field-scale experiments kriging polynomial response functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. L. and Cook, S. E. 1997. Methods of on-farm experimentation using precision agriculture technology. ASAE paper No. 97–3020 (ASAE, St. Joseph, MI, USA).Google Scholar
  2. Anderson, W. K., Belford, R. K., Crosbie, G. B., Loss, S. P., Mason, M. G., Perry, M. W. 1991

    Crop management

    Perry, M. W. Hillman,  B. eds. The Wheat Book: A Technical Manual for Wheat ProducersBulletin 4196, Department of AgricultureWestern Australia, Australia 87116
    Google Scholar
  3. Barrett, J. R., Castore, C. H. 1989

    Decision making and decision support

    Barrett ,  J. R. Jones, D. D. eds. Knowledge Engineering in AgricultureASAE Monograph No. 8, ASAE, MichiganUSA1319
    Google Scholar
  4. Boyd, D. A., Yuen, Lowsing, T. K. and Needham, P. 1976. Nitrogen requirement of cereals: 1. Response curves. Journal of Agricultural Science, Cambridge 87, 149–162.Google Scholar
  5. Bramley, R. G. V., Cook, S. E., Adams, M. L., Corner, R. J. 1999Designing Your Own On-Farm ExperimentsHow Precision Agriculture Can Help (Project CSO179, Grains Research and Development CorporationCanberra, AustraliaGoogle Scholar
  6. Briggs, G. E. 1925Plant yield and the intensity of external factors—Mitscherlich’s ‘Wirkungsgesetz’Annals of Botany39475502Google Scholar
  7. Bruulsema, T. W., Malzer, G. L., Robert, P. C., Davis, J. G. and Copeland, P. J. 1996. Spatial relationships of soil nitrogen with corn yield response to applied nitrogen. In: Precision Agriculture: Proceedings of the 3rd International Conference , edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA, CSSA, SSSA, Madison, Wisconsin, USA), pp. 505–512.Google Scholar
  8. Cerrato, M. E., Blackmer, A. M. 1990Comparison of models for describing corn yield response to nitrogen fertilizerAgronomy Journal82138143Google Scholar
  9. Cochran, W. G. 1977Sampling Techniques3WileyNew York, USAGoogle Scholar
  10. Cook, S. E. 1997

    Data interpretation and risk analysis for precision agriculture

    Bramley, R. G. V. Cook, S. E. McMahon, G. G. eds. Precision Agriculture: What Can it Offer the Sugar Industry?CSIRO Land & WaterTownsville, Australia7785
    Google Scholar
  11. Cook, S. E., Adams, M. L. and Corner, R. J. 1999. On-farm experimentation to determine site-specific responses to variable inputs. In: Precision Agriculture: Proceedings of the 4th International Conference (Part A), edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA, CSSA, SSSA, Madison, Wisconsin, USA), pp. 611–621.Google Scholar
  12. Dobermann, A., Ping, J. L., Simbahan, G. C. and Adamchuk, V. I. 2003. Processing of yield map data for delineating yield zones. In:Precision Agriculture: Proceedings of the 4th European Conference on Precision Agriculture , edited by J. V. Stafford and A. Werner (Wageningen Academic Publishers, The Netherlands), pp. 177–185.Google Scholar
  13. Doerge, T. A. and Gardner, D. L. 1999. On-farm testing using the adjacent strip comparison method. In: Precision Agriculture: Proceedings of the 4th International Conference, edited by P. C. Robert, R. H. Rust and W. E. Larson (ASA, CSSA, SSSA, Madison, Wisconsin, USA), pp. 603–609.Google Scholar
  14. Federer, W. T. 1955Experimental DesignThe MacMillan Company New York, USAGoogle Scholar
  15. Fretwell, G. 2004Innovative technology inspires efficiency gains in a broadacre Western Australian cropping systemFarm Management 11659664Google Scholar
  16. Goovaerts, P. 1997Geostatistics for Natural Resources Evaluation Oxford University PressNew York, USAGoogle Scholar
  17. Gotway Crawford, C. A., Bullock, D. G., Pierce, F. J., Stroup, W. W., Hergert, G. W., Eskridge, K. M. 1997

    Experimental design and statistical evaluation techniques for site-specific management

    Pierce,  F. J. Sadler , E. J. eds. The State of Site-Specific Management for AgricultureASA, CSSA, SSSA, Madison, WisconsinUSA301335
    Google Scholar
  18. Jauregui, M. A., Paris, Q. 1985Spline response functions for direct and carry-over effects involving a single nutrientSoil Science Society of America Journal 49140145Google Scholar
  19. Kerry, R. and Oliver, M. A. 2003. Co-kriging when soil and ancillary data are not co-located. In: Precision Agriculture: Proceedings of the 4th European Conference on Precision Agriculture , edited by J. V. Stafford and A. Werner (Wageningen Academic Publishers, The Netherlands), pp. 303–308.Google Scholar
  20. Lark, R. M. 2000Regression analysis with spatially autocorrelated error: simulation studies and application to mapping of soil organic matterInternational Journal of Geographical Information Science14247264Google Scholar
  21. Lark, R. M., Stafford, J. V. 1997Classification as a first step in the interpretation of temporal and spatial variation of crop yieldAnnals of Applied Biology130111121Google Scholar
  22. Lark, R. M., Wheeler, H. C. 2003A method to investigate within-field variation of the response of combinable crops to an inputAgronomy Journal9510931104Google Scholar
  23. Laslett, G. M., McBratney, A. B. 1990Estimation and implications of instrumental drift, random measurement error and nugget variance of soil attributes—a case study for soil pHJournal of Soil Science 41451471Google Scholar
  24. Laslett, G. M., McBratney, A. B., Pahl, P. J., Hutchinson, M. F. 1987Comparison of several spatial prediction methods for soil pHJournal of Soil Science38325341Google Scholar
  25. McBratney, A. B. 1985. The role of geostatistics in the design and analysis of field experiments with reference to the effect of soil properties on crop yield. In:Soil Spatial Variability: Proceedings of a Workshop of the ISSS and the SSSA. Las Vegas, USA. 30th November–1st December 1984, edited by D. R. Nielsen and J. Bouma (Pudoc, Wageningen, The Netherlands), pp. 3–8.Google Scholar
  26. McBratney, A. B., Webster, R. 1983Optimal interpolation and isarithmic mapping of soil properties: co-regionalization and multiple sampling strategyJournal of Soil Science34137162Google Scholar
  27. McBratney, A. B., Whelan, B. M. 1995

    Continuous models of soil variation for continuous soil management

    Robert, P. C. Rust , R. H.Larson , W. E. eds. Site-Specific Management for Agricultural SystemsASA, CSSA, SSSA, Madison, Wisconsin USA325338
    Google Scholar
  28. Mercer, W. B. and Hall, A. D. 1911. The experimental error of field trials. Journal of Agricultural Science, Cambridge 4, 107–127.Google Scholar
  29. Odeh, I. O. A., McBratney, A. B., Chittleborough, D. J. 1994Spatial prediction of soil properties from landform attributes derived from a digital elevation modelGeoderma63197214CrossRefGoogle Scholar
  30. Peace, G. S. 1993Taguchi MethodsAddison–Wesley, MassachussetsUSAGoogle Scholar
  31. Peters, M. W., James, I. T., Earl, R., Godwin, R. J. 1999. Nitrogen management strategies for precision farming. In: Precision Agriculture ‘99: Proceedings of the 2nd European Conference on Precision Agriculture , edited by J. V. Stafford (Sheffield Academic Press, Sheffield, UK), pp. 719–728.Google Scholar
  32. Pringle, M. J., McBratney, A. B. and Cook, S. E. 1999. Some methods of assessing yield response to a varied input. In: Precision Agriculture ‘99: Proceedings of the 2nd European Conference on Precision Agriculture , edited by J. V. Stafford (Sheffield Academic Press, Sheffield, UK), pp. 309–318.Google Scholar
  33. Pringle, M. J., McBratney, A. B., Whelan, B. M., Taylor, J. A. 2003A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield monitor dataAgricultural Systems76273292Google Scholar
  34. Stafford, J., Miller, V., Miller, P. C. H. 1993Spatially selective application of herbicide to cereal cropsComputers and Electronics in Agriculture9217229Google Scholar
  35. Stephens, D. J., Walker, G. K., Lyons, T. J. 1994Forecasting Australian wheat yields with a weighted rainfall indexAgricultural and Forest Meteorology71247263Google Scholar
  36. Stewart, C. M. and McBratney, A. B. 2000. Development of a methodology for the variable-rate application of fertiliser in irrigated cotton fields. Precision Agriculture: Proceedings of the 5th International Conference, edited by P. C. Robert, R. H. Rust and W. E. Larson (CD-ROM produced by ASA, CSSA, SSSA, Madison, Wisconsin, USA).Google Scholar
  37. Van Alphen, B. J., Stoorvogel, J. J. 2000A functional approach to soil characterization in support of precision agricultureSoil Science Society of America Journal6417061713Google Scholar
  38. Walter, A. M., Heisel, T., Christensen, S. 1997. Shortcuts in weed mapping. In: Precision Agriculture ‘97: Proceedings of the 1st European Conference on Precision Agriculture, edited by J. V. Stafford (BIOS Scientific Publishers, Oxford, UK), pp. 777–784.Google Scholar
  39. Webster, R., McBratney, A. B. 1989On the Akaike Information Criterion for choosing models for variograms of soil propertiesJournal of Soil Science40493496Google Scholar
  40. Webster, R., Oliver, M. A. 1990Statistical Methods in Soil and Land Resource SurveyOxford University PressNew York, USGoogle Scholar
  41. Whelan, B. M. and McBratney, A. B. 1997. Sorghum grain flow convolution within a conventional combine harvester. In: Precision Agriculture ‘97: Proceedings of the 1st European Conference on Precision Agriculture, edited by J. V. Stafford (BIOS Scientific Publishers, Oxford, UK), pp. 759–766.Google Scholar
  42. Whelan, B. M. McBratney, A. B. and Viscarra Rossel, R. A. 1996. Spatial prediction for precision agriculture. In: Precision Agriculture: Proceedings of the 3rd International Conference , edited by P. C.␣Robert, R. H. Rust and W. E. Larson (ASA, CSSA, SSSA, Madison, Wisconsin, USA), pp. 331–342.Google Scholar
  43. Whelan, B. M., McBratney and A. B., Stein, A. 2003. On-farm experiments for precision agriculture. In: Precision Agriculture: Proceedings of the 4th European Conference on Precision Agriculture, edited by J. V. Stafford and A. Werner (Wageningen Academic Publishers, The Netherlands), pp. 731–737.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Australian Centre for Precision AgricultureUniversity of SydneyAustralia
  2. 2.CIATCaliColombia
  3. 3.Rothamsted ResearchHarpenden, HertfordshireUK

Personalised recommendations