(Pluri)Potential Compactifications

  • Evgeny A. PoletskyEmail author


Using pluricomplex Green functions we introduce a compactification of a complex manifold M invariant with respect to biholomorphisms similar to the Martin compactification in the potential theory. For this we show the existence of a norming volume form V on M such that all negative plurisubharmonic functions on M are in L1(M, V ). Moreover, the set of such functions with the norm not exceeding 1 is compact. Identifying a point wM with the normalized pluricomplex Green function with pole at w we get an imbedding of M into a compact set and the closure of M in this set is the pluripotential compactification.


Plurisubharmonic functions Pluripotential theory Martin boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Armitage, D.H., Gardiner, S.J.: Classical potential theory. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bracci, F., Patrizio, G., Trapani, S.: The pluricomplex Poisson kernel for strongly convex domains. Trans. Amer. Math. Soc. 361, 979–1005 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chang, C.-H., Hu, M.C., Lee, H.-P.: Extremal analytic discs with prescribed boundary data. Trans. Amer. Math. Soc. 310, 355–369 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demailly, J.-P.: Mesures de Monge-Ampére et mesures pluriharmoniques. Math. Z. 194, 519–564 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
  6. 6.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis. Springer, Berlin (1983)zbMATHGoogle Scholar
  7. 7.
    Klimek, M.: Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. France 113, 123–142 (1985)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Klimek, M.: Pluripotential theory. Clarendon Press, Oxford (1991)zbMATHGoogle Scholar
  9. 9.
    Keldysch, M.V., Lavrentiev, M.A.: Sur une évalution pour la fonction de Green. Dokl. Acad. Nauk USSR 24, 102–103 (1939)Google Scholar
  10. 10.
    Lelong, P.: Discontinuité et annulation de l’opérateur de Monge-Ampére complexe, P. Lelong-P. Dolbeault-H. Skoda analysis seminar, 1981/1983, Lecture Notes in Math, vol. 1028, pp 219—224. Springer, Berlin (1983)Google Scholar
  11. 11.
    Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109, 427–474 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Martin, R.S.: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49, 137–172 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Poletsky, E.A., Shabat, B.V.: Invariant metrics, Current problems in mathematics. Fund. Dir. 9, 73–125 (1986). Itogi Nauki i Tekhniki. Akad. Nauk SSSRGoogle Scholar
  14. 14.
    Privalov, I.I., Kuznetsov, P.K.: Boundary problems and classes of harmonic and subharmonic functions in arbitrary domains. Mat. Sb. 6, 345–375 (1939)Google Scholar
  15. 15.
    Solomentsev, E.D.: Boundary values of subharmonic functions. Czech. Math. J. 8, 520–534 (1958)MathSciNetGoogle Scholar
  16. 16.
    Vladimirov, V.S.: Equations of Mathematical Physics. Moscow, Nauka (1967)Google Scholar
  17. 17.
    Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17–37 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhao, Z.X.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsSyracuse UniversitySyracuseUSA

Personalised recommendations