Abstract
Using pluricomplex Green functions we introduce a compactification of a complex manifold M invariant with respect to biholomorphisms similar to the Martin compactification in the potential theory. For this we show the existence of a norming volume form V on M such that all negative plurisubharmonic functions on M are in L1(M, V ). Moreover, the set of such functions with the norm not exceeding 1 is compact. Identifying a point w ∈ M with the normalized pluricomplex Green function with pole at w we get an imbedding of M into a compact set and the closure of M in this set is the pluripotential compactification.
Keywords
Plurisubharmonic functions Pluripotential theory Martin boundaryPreview
Unable to display preview. Download preview PDF.
Notes
References
- 1.Armitage, D.H., Gardiner, S.J.: Classical potential theory. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
- 2.Bracci, F., Patrizio, G., Trapani, S.: The pluricomplex Poisson kernel for strongly convex domains. Trans. Amer. Math. Soc. 361, 979–1005 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Chang, C.-H., Hu, M.C., Lee, H.-P.: Extremal analytic discs with prescribed boundary data. Trans. Amer. Math. Soc. 310, 355–369 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Demailly, J.-P.: Mesures de Monge-Ampére et mesures pluriharmoniques. Math. Z. 194, 519–564 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
- 6.Hörmander, L.: The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis. Springer, Berlin (1983)zbMATHGoogle Scholar
- 7.Klimek, M.: Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. France 113, 123–142 (1985)MathSciNetzbMATHGoogle Scholar
- 8.Klimek, M.: Pluripotential theory. Clarendon Press, Oxford (1991)zbMATHGoogle Scholar
- 9.Keldysch, M.V., Lavrentiev, M.A.: Sur une évalution pour la fonction de Green. Dokl. Acad. Nauk USSR 24, 102–103 (1939)Google Scholar
- 10.Lelong, P.: Discontinuité et annulation de l’opérateur de Monge-Ampére complexe, P. Lelong-P. Dolbeault-H. Skoda analysis seminar, 1981/1983, Lecture Notes in Math, vol. 1028, pp 219—224. Springer, Berlin (1983)Google Scholar
- 11.Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109, 427–474 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Martin, R.S.: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49, 137–172 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Poletsky, E.A., Shabat, B.V.: Invariant metrics, Current problems in mathematics. Fund. Dir. 9, 73–125 (1986). Itogi Nauki i Tekhniki. Akad. Nauk SSSRGoogle Scholar
- 14.Privalov, I.I., Kuznetsov, P.K.: Boundary problems and classes of harmonic and subharmonic functions in arbitrary domains. Mat. Sb. 6, 345–375 (1939)Google Scholar
- 15.Solomentsev, E.D.: Boundary values of subharmonic functions. Czech. Math. J. 8, 520–534 (1958)MathSciNetGoogle Scholar
- 16.Vladimirov, V.S.: Equations of Mathematical Physics. Moscow, Nauka (1967)Google Scholar
- 17.Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17–37 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Zhao, Z.X.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Nature B.V. 2019