Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quasiopen Sets, Bounded Variation and Lower Semicontinuity in Metric Spaces

Abstract

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we show that the total variation of functions of bounded variation is lower semicontinuous with respect to L1-convergence in every 1-quasiopen set. To achieve this, we first prove a new characterization of the total variation in 1-quasiopen sets. Then we utilize the lower semicontinuity to show that the variation measures of a sequence of functions of bounded variation converging in the strict sense are uniformly absolutely continuous with respect to the 1-capacity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

  2. 2.

    Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, p xii+ 403. European Mathematical Society (EMS), Zürich (2011)

  3. 3.

    Björn, A., Björn, J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. Rev. Mat. Iberoam. 31(1), 161–214 (2015)

  4. 4.

    Björn, A., Björn, J., Latvala, V.: The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces. J. Anal. Math. 135(1), 59–83 (2018)

  5. 5.

    Björn, A., Björn, J., Latvala, V.: The weak Cartan property for the p-fine topology on metric spaces. Indiana Univ. Math. J. 64(3), 915–941 (2015)

  6. 6.

    Björn, A., Björn, J., Malý, J.: Quasiopen and p-path open sets, and characterizations of quasicontinuity. Potential Anal. 46(1), 181–199 (2017)

  7. 7.

    Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. 34(4), 1197–1211 (2008)

  8. 8.

    Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

  9. 9.

    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics Series. CRC Press, Boca Raton (1992)

  10. 10.

    Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153, p xiv+ 676. Springer, New York (1969)

  11. 11.

    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, p xii+ 240. Birkhäuser, Basel (1984)

  12. 12.

    Hajłasz, P.: Sobolev Spaces on Metric-Measure Spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), 173–218, Contemp Math., vol. 338. American Mathematical Society, Providence (2003)

  13. 13.

    Hakkarainen, H., Kinnunen, J.: The BV-capacity in metric spaces. Manuscripta Math. 132(1-2), 51–73 (2010)

  14. 14.

    Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext, p x + 140. Springer, New York (2001)

  15. 15.

    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original, p xii+ 404. Dover Publications, Inc., Mineola (2006)

  16. 16.

    Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

  17. 17.

    Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. An approach based on upper gradients, New Mathematical Monographs, vol. 27, p xii+ 434. Cambridge University Press, Cambridge (2015)

  18. 18.

    Korte, R., Lahti, P., Li, X., Shanmugalingam, N.: Notions of Dirichlet problem for functions of least gradient in metric measure spaces, to appear in Revista Matemática Iberoamericana

  19. 19.

    Kuratowski, K.: Introduction to set theory and topology. Completely revised second English edition. First edition translated from the Polish by Leo F. Boron. International Series of Monographs in Pure and Applied Mathematics, Vol. 101. Pergamon Press, Oxford–New York–Toronto, Ont.; PWN—Polish Scientific Publishers, Warsaw, 352 pp. (1972)

  20. 20.

    Lahti, P.: A Federer-style characterization of sets of finite perimeter on metric spaces. Calc. Var. Partial Differ. Eqs. 56(5, Art. 150), 22 (2017)

  21. 21.

    Lahti, P.: A notion of fine continuity for BV functions on metric spaces. Potential Anal. 46(2), 279–294 (2017)

  22. 22.

    Lahti, P.: Strong approximation of sets of finite perimeter in metric spaces. Manuscripta Math. 155(3–4), 503–522 (2018)

  23. 23.

    Lahti, P., Malý, L., Shanmugalingam, N.: An analog of the Neumann problem for the 1-Laplace equation in the metric setting: existence, boundary regularity, and stability. Anal. Geom. Metr. Spaces 6, 1–31 (2018)

  24. 24.

    Lahti, P., Shanmugalingam, N.: Fine properties and a notion of quasicontinuity for BV functions on metric spaces. J de Mathématiques Pures et Appliquées 107(2), 150–182 (2017)

  25. 25.

    Malý, J., Ziemer, W.: Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, vol. 51, p xiv+ 291. American Mathematical Society, Providence (1997)

  26. 26.

    Miranda, M., Jr.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

  27. 27.

    Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45 (3), 1021–1050 (2001)

  28. 28.

    Shanmugalingam, N.: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

  29. 29.

    Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

Download references

Acknowledgments

The research was funded by a grant from the Finnish Cultural Foundation. The author wishes to thank Nageswari Shanmugalingam and two anonymous referees for giving helpful comments on the manuscript.

Author information

Correspondence to Panu Lahti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lahti, P. Quasiopen Sets, Bounded Variation and Lower Semicontinuity in Metric Spaces. Potential Anal 52, 321–337 (2020). https://doi.org/10.1007/s11118-018-9749-8

Download citation

Keywords

  • Metric measure space
  • Function of bounded variation
  • Total variation
  • Quasiopen set
  • Lower semicontinuity
  • Uniform absolute continuity

Mathematics Subject Classification (2010)

  • 30L99
  • 31E05
  • 26B30