Advertisement

Unbounded Weighted Composition Operators on Fock space

  • Pham Viet HaiEmail author
Article
  • 8 Downloads

Abstract

In this paper, we consider unbounded weighted composition operators acting on Fock space, and investigate some important properties of these operators, such as \(\mathcal {C}\)-selfadjoint (with respect to weighted composition conjugations), Hermitian, normal, and cohyponormal. In addition, the paper shows that unbounded normal weighted composition operators are contained properly in the class of \(\mathcal {C}\)-selfadjoint operators with respect to weighted composition conjugations.

Keywords

Fock space Unbounded weighted composition operator Complex symmetry Selfadjointness Normality 

Mathematics Subject Classification (2010)

47 B33 47 B32 30 D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author wishes to thank Dr L. H. Khoi for a comment on the presentation of the first draft. The author also greatly appreciates the careful eye of the anonymous referee, who pointed out minor typos in Theorem 3.3.

References

  1. 1.
    Bourdon, P.S., Narayan, S.K.: Normal weighted composition operators on the Hardy space \({H}^{2}(\mathbb {U})\). J. Math. Anal Appl. 367, 278–286 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cowen, C., Ko, E.: Hermitian weighted composition operators on H 2. Trans. Amer. Math Soc. 362, 5771–5801 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cowen, C.C., MacCluer, B.D.: Composition operators on spaces of analytic functions. Studies in advanced mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  4. 4.
    Cowen, C.C., Jung, S., Ko, E.: Normal and cohyponormal weighted composition operators on H 2. In: Operator theory in harmonic and non-commutative analysis, pp. 69–85. Springer International Publishing, Cham (2014)Google Scholar
  5. 5.
    Garcia, S.R., Hammond, C.: Which weighted composition operators are complex symmetric? Oper. Theory Adv. Appl. 236, 171–179 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Garcia, S.R., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A 47, 353001, 54 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. Trans. Amer. Math. Soc. 358, 1285–1315 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Garcia, S.R., Putinar, M.: Complex symmetric operators and applications II. Trans. Amer. Math. Soc. 359, 3913–3931 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Glazman, I.M.: An analogue of the extension theory of Hermitian operators and a non-symmetric one-dimensional boundary problem on a half-axis (Russian). Dokl. Akad. Nauk SSSR (N.S.) 115, 214–216 (1957)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Glazman, I.M.: Direct methods of qualitative spectral analysis of singular differential operators. Translated from the Russian by the IPST Staff. Israel program for scientific translations, Jerusalem (1965)Google Scholar
  11. 11.
    Hai, P.V., Khoi, L.H.: Boundedness and compactness of weighted composition operators on Fock spaces \(\mathcal {F}^{p}(\mathbb {C})\). Acta Mathematica Vietnamica 41, 531–537 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hai, P.V., Khoi, L.H.: Complex symmetry of weighted composition operators on the Fock space. J. Math. Anal Appl. 433, 1757–1771 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Izuchi, K.H.: Cyclic vectors in the Fock space over the complex plane. Proc. Amer. Math. Soc. 133, 3627–3630 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jung, S., Kim, Y., Ko, E., Lee, J.E.: Complex symmetric weighted composition operators on \({H}^{2}(\mathbb {D})\). J. Funct Anal. 267, 323–351 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Knowles, I.: On the boundary conditions characterizing J-selfadjoint extensions of J-symmetric operators. J. Differential Equations 40, 193–216 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Le, T.: Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math Soc. 46, 847–856 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Race, D.: The theory of J-selfadjoint extensions of J-symmetric operators. J. Differential Eq. 57, 258–274 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schmüdgen, K.: Unbounded self-adjoint operators on Hilbert space. Graduate texts in mathematics, vol. 265. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  19. 19.
    Stein, E.M., Shakarchi, R.: Complex analysis. Princeton lectures in analysis, vol. 2. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  20. 20.
    Szafraniec, F.H.: The reproducing kernel property and its space: the basics. Operator Theory, Springer Reference, vol. 1, pp. 3–30. Springer, Basel (2015)zbMATHGoogle Scholar
  21. 21.
    Thompson, D.: Normality properties of weighted composition operators on H 2. In: Problems and Recent Methods in Operator Theory, Contemp. Math., vol. 687, pp. 231-239. Amer. Math. Soc., Providence, RI (2017)Google Scholar
  22. 22.
    Wang, M., Yao, X.: Complex symmetry of weighted composition operators in several variables. Internat. J. Math. 27(2), 1650017, 14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhu, K.: Analysis on Fock spaces. Springer, New York (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.ISE Department at the National University of Singapore (NUS)SingaporeSingapore

Personalised recommendations