Advertisement

Potential Analysis

, Volume 50, Issue 2, pp 171–195 | Cite as

Weighted Composition Operators Between Different Fock Spaces

  • Pham Trong Tien
  • Le Hai KhoiEmail author
Article

Abstract

We study weighted composition operators acting between Fock spaces. The following results are obtained:
  • (i) Criteria for the boundedness and compactness.

  • (ii) Characterizations of compact differences and essential norm.

  • (iii) Complete descriptions of path connected components and isolated points of the space of composition operators and the space of nonzero weighted composition operators.

Keywords

Fock space Weighted composition operator Essential norm Compact difference Topological structure 

Mathematics Subject Classification (2010)

30D15 47B33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the Referee for useful remarks and comments that led to the improvement of the paper. Thanks also go to Trieu Le for useful comments on the first version of this paper.

References

  1. 1.
    Beltrán-Meneu, M.J., Gómez-Collado, M.C., Jordá, E., Jornet, D.: Mean ergodicity of weighted composition operators on spaces of holomorphic functions. J. Math. Anal. Appl. 444, 1640–1651 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bès, J.: Dynamics of weighted composition operators. Compl. Anal. Oper. Theory 8, 159–176 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonet, J., Lindström, M., Wolf, E.: Topological structure of the set of weighted composition operators on weighted Bergman spaces of infinite order. Integr. Equ. Oper. Theory 65, 195–210 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carswell, B., MacCluer, B., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. 69, 871–887 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Contreras, M.D., Hernández-Díaz, A.G.: Weighted composition operators between different Hardy spaces. Integr. Equ. Oper. Theory 46, 871–887 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cowen, C.C.: The commutant of an analytic Toeplitz operator. Trans. Am. Math. Soc. 239, 1–31 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cowen, C.C.: An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators. J. Funct. Anal. 36, 169–184 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cowen, C.C.: A new class of operators and a description of adjoints of composition operators. J. Funct. Anal. 238, 447–462 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cowen, C.C., MacCluer, B.D.: Composition operators on spaces of analytic functions, studies in advanced mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  10. 10.
    C̆uc̆ković, Z., Zhao, R.: Weighted composition operators on the Bergman space. J. London Math. Soc. 70(2), 499–511 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dai, J.: Topological components of the space of composition operators on Fock spaces. Compl. Anal. Oper. Theory 9, 201–212 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Forelli, F.: The isometries of H p. Can. J. Math. 16, 721–728 (1964)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gallardo-Gutiérrez, E.A., González, M.J., Nieminen, P.J., Saksman, E.: On the connected component of compact composition operators on the Hardy space. Adv. Math. 219, 986–1001 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hai, P.V., Khoi, L.H.: Boundedness and compactness of weighted composition operators on Fock spaces \({\mathcal {F}}^{p}(\mathbb {C})\). Acta Math. Vietnam 41(3), 531–537 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hai, P.V., Khoi, L.H.: Complex symmetry of weighted composition operators on the Fock space. J. Math. Anal. Appl. 433(2), 1757–1771 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on \(H^{\infty }\). Integr. Equ. Oper. Theory 53, 509–526 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integr. Equ. Oper. Theory 70, 541–559 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Izuchi, K.J., Ohno, S.: Path connected components in weighted composition operators on \(h^{\infty }\) and \(H^{\infty }\) with the operator norm. Trans. Am. Math. Soc. 365, 3593–3612 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Izuchi, K.J., Izuchi, Y., Ohno, S.: Topological structure of the space of weighted composition operators between different Hardy spaces. Integr. Equ. Oper. Theory 80, 153–164 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Le, T.: Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math. Soc. 46, 847–856 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    MacCluer, B.D., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on \(H^{\infty }\). Integr. Equ. Oper. Theory 40, 481–494 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Manhas, J.S.: Compact differences of weighted composition operators on weighted Banach spaces of analytic functions. Integr. Equ. Oper. Theory 62, 419–428 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219, 70–92 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shapiro, J.H.: Compositions operators and classical function theory. Springer, New York (1993)CrossRefGoogle Scholar
  25. 25.
    Shapiro, J.H., Sundberg, C.: Isolation amongst the composition operators. Pac. J. Math. 145, 117–152 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ueki, S.: Weighted composition operator on the Fock space. Proc. Am. Math. Soc. 135, 1405–1410 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135, 3263–3271 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Mechanics and InformaticsHanoi University of Science, VNUHanoiVietnam
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological University (NTU)SingaporeSingapore

Personalised recommendations