Potential Analysis

, Volume 45, Issue 1, pp 55–64 | Cite as

Certain Multi(sub)linear Square Functions

  • Loukas Grafakos
  • Sha He
  • Qingying XueEmail author


Let \(d\ge 1, \ell \in \mathbb {Z}^{d}\), \(m\in \mathbb {Z}^{+}\) and θ i , i=1,…, m are fixed, distinct and nonzero real numbers. We show that the m-(sub)linear version below of the Ratnakumar and Shrivastava (Proc. Amer. Math. Soc. 140(12), 4285–4293 2012) Littlewood-Paley square function
$$ T(f_{1},{\dots } , f_{m})(x)=\left (\sum \limits _{\ell \in \mathbb {Z}^{d}}|{\int }_{\mathbb {R}^{d}}f_{1}(x-\theta _{1} y){\cdots } f_{m}(x-\theta _{m} y)e^{2\pi i \ell \cdot y}K (y)dy|^{2}\right )^{1/2} $$
is bounded from \(L^{p_{1}}(\mathbb {R}^{d}) \times \cdots \times L^{p_{m}}(\mathbb {R}^{d}) \) to \(L^{p}(\mathbb {R}^{d}) \) when 2 ≤ p i < satisfy 1/p=1/p 1+⋯+1/p m and 1 ≤ p < . Our proof is based on a modification of an inequality of Guliyev and Nazirova (Int. Eq. Oper. Theory 60(4), 485–497 2008) concerning multilinear convolutions.


Multilinear operators Littlewood-Paley square functions orthogonality 

Mathematics Subject Classfication (2010)

Primary 42B20 Secondary 42B25. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergh, J., Löfström, J.: Interpolation spaces. An Intorduction. Grundlehren der mathematische Wissenschaften, vol. 223. Springer, Berlin-Heidelberg-New York (1976)Google Scholar
  2. 2.
    Bernicot, F.: L p estimates for non smooth bilinear Littlewood-Paley square functions on \(\mathbb {R}\). Math. Ann. 351(1), 1–49 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
  4. 4.
    Bernicot, F., Shrivastava, S.: Bounedness of smooth bilinear square functions and applications to some bilinear pseudo-differential operators. Indiana Univ. Math. J. 60(1), 233–268 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grafakos, L., Mastyło, M.: Analytic families of multilinear operators. Nonlinear Anal. 107, 47–62 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guliyev, V.S., Nazirova, S.A.: O’ Neil inequality for multilinear convolutions and some applications. Int. Eq. Oper. Theory 60(4), 485–497 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lacey, M.: On bilinear Littlewood-Paley square functions. Publ. Mat. 40(2), 387–396 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lacey, M., Thiele, C.: L p estimates on the bilinear Hilbert transform for 2 < p < . Ann. of Math. 146(3), 693–724 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. of Math. 149(2), 475–496 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mohanty, P., Shrivastava, S.: A note on the bilinear Littlewood-Paley square function. Proc. Amer. Math. Soc. 138(6), 2095–2098 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ratnakumar, P.K., Shrivastava, S.: On bilinear Littlewood-Paley square functions. Proc. Amer. Math. Soc. 140(12), 4285–4293 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ratnakumar, P.K., Shrivastava, S.: A remark on bilinear Littlewood-Paley square functions. Monatsh. Math. doi: 10.1007/s00605-014-0668-5
  13. 13.
    Zygmund, A.: Trigonometric Series, II, 2nd ed. Cambridge University Press, Cambridge, UK (1959)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.School of Mathematical SciencesBeijing Normal University Laboratory of Mathematics and Complex Systems Ministry of EducationBeijingPeople’s Republic of China

Personalised recommendations