Potential Analysis

, Volume 41, Issue 3, pp 959–982

The Subelliptic Heat Kernels of the Quaternionic Hopf Fibration



The main goal of this work is to study the sub-Laplacian of the unit sphere which is obtained by lifting with respect to the Hopf fibration the Laplacian of the quaternionic projective space. We obtain in particular explicit formulas for its heat kernel and deduce an expression for the Green function of the conformal sub-Laplacian and small-time asymptotics. As a byproduct of our study we also obtain several results related to the sub-Laplacian of a projected Hopf fibration.


Heat kernel Quaternionic Hopf fibration Small-time asymptotics 

Mathematics Subject Classifications

58J35 53C17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrachev, A., Boscain, U., Gauthier, J.P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barilari, D., Boscain, U., Neel, R.: Small time heat kernel asymptotics at the sub -Riemannian cut locus. JDG 92(3), 373–416 (2012)MathSciNetMATHGoogle Scholar
  3. 3.
    Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on S U(2): representations, asymptotics and gradient bounds. Math. Z 263, 647–672 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baudoin, F., Cecil, M.: The subelliptic heat kernel on the three-dimensional solvable groups. To appear in Forum Mathematicum (2013)Google Scholar
  5. 5.
    Baudoin. F., Wang, J: The subelliptic heat kernel on the CR sphere. Math. Z 275(1-2), 135–150 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bauer, R.O.: Analysis of the horizontal Laplacian for the Hopf fibration. Forum Math. 17(6), 903–920 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Beals, R., Gaveau, B., Greiner, P.C.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(7), 633–689 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4) 21, 307–331 (1988)MathSciNetMATHGoogle Scholar
  9. 9.
    Biquard, O.: Quaternionic contact structures. Univ. Studi Roma “La Sapienza”, Rome (1999). In: Quaternionic Structures in Mathematics and Physics. (Rome, 1999), 23–30 (electronic)Google Scholar
  10. 10.
    Bonnefont, M.: The subelliptic heat kernel on SL(2,R) and on its universal covering: integral representations and some functional inequalities. Potential Anal. 36(2), 275–300 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Boyer, CP, Galicki, K: 3-Sasakian manifolds, Surveys in differential geometry: essays on Einstein manifolds, pp. 123–184. Surv. Differ. Geom., VI, Int. Press, Boston (1999)Google Scholar
  12. 12.
    Calin, O, Chang, D C, Furutani, K., Iwasaki, C.: Heat kernels for elliptic and sub-elliptic operators. Methods and techniques. In: Applied and Numerical Harmonic Analysis. Birkhuser/Springer, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Escobales, R.H.: Riemannian submersions with totally geodesic fibers. J. Differ. Geom. 10, 253–276 (1975)MathSciNetMATHGoogle Scholar
  14. 14.
    Faraut, J: Analysis on Lie Groups, an Introduction. Cambridge University Press (2008)Google Scholar
  15. 15.
    Gaveau B.: Principe de moindre action, propagation de la chaleur et estiméees sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1), 95–153 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Greiner, P.: A Hamiltonian Approach to the Heat Kernel of a Sub-Laplacian on S(2n+1). arXiv:1303.0457Google Scholar
  17. 17.
    Ivanov, S., Minchev, I., Vassilev, D: Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem. (to appear in Mem. of AMS) (2013)Google Scholar
  18. 18.
    Ivanov, S., Petkov, A., Vassilev, D: The Obata sphere theorems on a quaternionic contact manifold of dimension bigger than seven. arXiv:1303.0409 (2013)Google Scholar
  19. 19.
    Molina, M, Markina, I.: Sub-Riemannian geodesics and heat operator on odd dimensional spheres. Anal. Math. Phys. 2(2), 123–147 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang, J.: The subelliptic heat kernel on the CR hyperbolic spaces. arXiv:1204.3642 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsPurdue University West LafayetteWest LafayetteUSA

Personalised recommendations