Advertisement

Potential Analysis

, Volume 41, Issue 3, pp 761–769 | Cite as

Kolmogorov–Chentsov Theorem and Differentiability of Random Fields on Manifolds

  • R. Andreev
  • A. Lang
Article

Abstract

A version of the Kolmogorov–Chentsov theorem on sample differentiability and Hölder continuity of random fields on domains of cone type is proved, and the result is generalized to manifolds.

Keywords

Random fields on manifolds Kolmogorov-Chentsov theorem Sample Hölder continuity Sample differentiability Sobolev embeddings 

Mathematics Subject Classifications (2010)

60G60 60G17 46E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)Google Scholar
  2. 2.
    Adler, J.R.: The Geometry of Random Fields. Reprint of the 1981 original ed. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)zbMATHGoogle Scholar
  3. 3.
    Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)Google Scholar
  4. 4.
    Brézis, H.: How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat. Nauk. 57:4(346), 59–74 (2002)CrossRefGoogle Scholar
  5. 5.
    Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(1), 216–246 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chentsov, N.N.: Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests. Theory Probab. Appl. 1(1), 140–144 (1956)CrossRefGoogle Scholar
  7. 7.
    Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications. Wiley, New York (1967)zbMATHGoogle Scholar
  8. 8.
    Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  9. 9.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  10. 10.
    Hoffmann-Jørgensen, J.: Stochastic Processes on Polish Spaces. Åarhus Universitet, Matematisk Institut, Åarhus (1991)Google Scholar
  11. 11.
    Khoshnevisan, D.: Multiparameter Processes. An Introduction to Random Fields. Springer Monographs in Mathematics. Springer, New York (2002)Google Scholar
  12. 12.
    Klingenberg, W.P.A.: Riemannian Geometry. de Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter & Co., Berlin (1995)Google Scholar
  13. 13.
    Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and stochastic partial differential equations. SAM Report 2013-15. arXiv:1305.1170 [math.PR] (2012)
  14. 14.
    Lang, S.: Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)CrossRefGoogle Scholar
  15. 15.
    Lee, J.M.: Manifolds and Differential Geometry, Graduate Studies in Mathematics, vol. 107. American Mathematical Society, Providence (2009)Google Scholar
  16. 16.
    Loève, M.: Probability Theory II, Graduate Texts in Mathematics, vol. 46, 4th edn. Springer, New York (1978)Google Scholar
  17. 17.
    Mittmann, K., Steinwart, I.: On the existence of continuous modifications of vector-valued random fields. Georgian Math. J. 10(2), 311–317 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Nousiainen, T., McFarquhar, G.M.: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61(18), 2229–2248 (2004)CrossRefGoogle Scholar
  19. 19.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  20. 20.
    Potthoff, J.: Sample properties of random fields I: Separability and measurability. Comm. Stoch. Anal. 3(3), 143–153 (2009)Google Scholar
  21. 21.
    Potthoff, J.: Sample properties of random fields II: Continuity. Comm. Stoch. Anal. 3(1), 331–348 (2009)Google Scholar
  22. 22.
    Potthoff, J.: Sample properties of random fields III: Differentiability. Comm. Stoch. Anal. 4(3), 335–353 (2010)MathSciNetGoogle Scholar
  23. 23.
    Schilling, R.L.: Sobolev embedding for stochastic processes. Expo. Math. 18(3), 239–242 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Slutsky, E.: Qualche proposizione relativa alla teoria delle funzioni aleatorie. Giorn. Ist. Ital. Attuari. 8, 183–199 (1937)Google Scholar
  25. 25.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)Google Scholar
  26. 26.
    Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge. Translated from the German by C. B. Thomas and M. J. Thomas (1987)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Seminar für Angewandte MathematikETH ZürichZürichSwitzerland
  2. 2.RICAMAustrian Academy of SciencesLinzAustria
  3. 3.Department of Mathematical SciencesChalmers University of Technology and University of GothenburgGöteborgSweden

Personalised recommendations