Potential Analysis

, Volume 40, Issue 2, pp 163–193

Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds


DOI: 10.1007/s11118-013-9345-x

Cite this article as:
Baudoin, F. & Wang, J. Potential Anal (2014) 40: 163. doi:10.1007/s11118-013-9345-x


We study curvature dimension inequalities for the sub-Laplacian on contact Riemannian manifolds. This new curvature dimension condition is then used to obtain:
  • Geometric conditions ensuring the compactness of the underlying manifold (Bonnet–Myers type results);

  • Volume estimates of metric balls;

  • Gradient bounds and stochastic completeness for the heat semigroup generated by the sub-Laplacian;

  • Spectral gap estimates.


Curvature dimension inequality Γ2 calculus Contact manifold Bochner’s formula Gradient bounds for the heat semigroup 

Mathematics Subject Classifications (2010)

53C17 53C25 58J35 

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations