Potential Analysis

, Volume 39, Issue 2, pp 195–202 | Cite as

An Asymptotic Formula Concerning the Eigenvalues of the Dirichlet Laplacian in a Planar Domain

  • M. R. DostanićEmail author


We shall prove the equivalent of the Carleman-Grinberg formula for the Dirichlet Laplacian in convex planar domain.


Dirichlet Laplacian Green function McDonald function Nuclear operators 

AMS Subject Classification

47A75 35J25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berezin, F.A.: Convex function of operators. Mat. Sb. (N.S.) 88(130), 268–476 (1972)MathSciNetGoogle Scholar
  2. 2.
    Berezin, F.A.: Covariant and contravariant symbols of operators. Izv. Akad.Nauki. SSSR, Ser. Mat. 36, 1134–1167 (1972)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Carleman, T.: Veber die asymptotische Verteilung der Eigenwerte partieller Differentialgechungen, Berichte der Sächsisch. Akad. der wiss. zu Lepzig, Math. Phys, vol. 119. Klasse LXXXVIII (1936)Google Scholar
  4. 4.
    Dostanić, M.R.: Regularized trace of the inverse of the Dirichlet Laplacian. Commun. Pure and Appl. Math. 64(8), 1148–1164 (2011)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. Transl. of Math. Monographs, 19, Amer. Math. Soc. Providence R. I. (1969)Google Scholar
  6. 6.
    Grinberg, S.I.: Asymptotic of the eigenvalues of the Laplace operator. Uspekhi Mat Nauk, T VIII, V. 6, 97–102 (1953)MathSciNetGoogle Scholar
  7. 7.
    Krein, M.G.: On the trace formula in perturbation theory. Mat. Sb. N.S. 33(75), 597–626 (1953)MathSciNetGoogle Scholar
  8. 8.
    Randol, B.: On the Fourier transform of the indicator function of a planar set. Trans. Am. Math. Soc. 139, 271–278 (1969)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Simon, B.: Trace ideals and their applications, 2nd edn. In: Mathematical Surveys and Monographs, vol. 120, Amer. Math. Soc., Providence R.I. (2005)Google Scholar
  10. 10.
    Gesztesy, F., Pushnitsky, A., Simon, B.: On the Koplienka spectral shift function, I. Basics. Zh. Mat. Fiz. Anal. Geom. 4(1), 63–107 (2008)zbMATHGoogle Scholar
  11. 11.
    Watson, G.N.: A treatise of the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge (1962)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Matematicki fakultetUniverzitet u BeograduBeogradSerbia

Personalised recommendations