Advertisement

Potential Analysis

, Volume 38, Issue 3, pp 863–912 | Cite as

Stochastic Navier–Stokes Equations Driven by Lévy Noise in Unbounded 3D Domains

  • Elżbieta MotylEmail author
Open Access
Article

Abstract

Martingale solutions of the stochastic Navier–Stokes equations in 2D and 3D possibly unbounded domains, driven by the Lévy noise consisting of the compensated time homogeneous Poisson random measure and the Wiener process are considered. Using the classical Faedo–Galerkin approximation and the compactness method we prove existence of a martingale solution. We prove also the compactness and tightness criteria in a certain space contained in some spaces of càdlàg functions, weakly càdlàg functions and some Fréchet spaces. Moreover, we use a version of the Skorokhod Embedding Theorem for nonmetric spaces.

Keywords

Stochastic Navier–Stokes equations Martingale solution Poisson random measure Compactness method 

Mathematics Subject Classifications (2010)

35Q30 60H15 76M35 

References

  1. 1.
    Adams, R.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Aldous, D.: Stopping times and tightness. Ann. Probab. t.6 2, 335–340 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Badrikian, A.: Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques. In: Lect. Notes in Math., vol. 139. Springer, Heidelberg (1970)Google Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1969)Google Scholar
  5. 5.
    Brezis H.: Analyse Fonctionnelle. Masson (1983)Google Scholar
  6. 6.
    Brzeźniak, Z., Hausenblas, E.: Martingale solutions for stochastic equations of reaction diffusion type driven by Lévy noise or Poisson random measure. Preprint arXiv: 1010.5933v1 [math. PR] 28 Oct (2010)
  7. 7.
    Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolution driven by Lévy processes. Probab. Theory Relat. Fields 145, 615–637 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358, 5587–5629 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Brzeźniak, Z., Motyl, E.: Existence of martingale solutions of the stochastic Navier–Stokes equations in unbounded 2D and 3D-domains. Preprint arXiv:1208.3386v1 [math.PR] 16 Aug (2012)
  10. 10.
    Brzeźniak, Z., Ondreját, M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. Preprint arXiv: 1101.4835v1 [math PR] 25 Jan (2011)
  11. 11.
    Brzeźniak, Z., Peszat, S.: Stochastic two dimensional Euler equations. Ann. Probab. 29(4), 1796–1832 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Capiński, M., Peszat, S.: On the existence of a solution to stochastic Navier–Stokes equations. Nonlinear Anal. 44, 141–177 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dong, Z., Xie, Y.: Ergodicity of stochastic 2D Navier–Stokes equations with Lévy noise. J. Differ. Equ. 251, 196–222 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dong, Z., Xie, Y., Global solutions of stochastic 2D Navier–Stokes equations with Lévy noise. Sci. China, Ser. A Math. 52(7), 1497–1524 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dong, Z., Zhai, J.: Martingale solutions and Markov selection of stochastic 3D Navier–Stokes equations with jump. J. Differ. Equ. 250, 2737–2778 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Holly, K., Wiciak, M.: Compactness method applied to an abstract nonlinear parabolic equation. Selected problems of Mathematics, pp. 95–160. Cracow University of Technology (1995)Google Scholar
  17. 17.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam (1981)zbMATHGoogle Scholar
  18. 18.
    Jakubowski, A.: The almost sure Skorohod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997); Translation in Theory Probab. Appl. 42(1), 167–174 (1998)Google Scholar
  19. 19.
    Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires. Dunod, Paris (1969)zbMATHGoogle Scholar
  21. 21.
    Métivier, M.: Semimartingales. Gruyter (1982)Google Scholar
  22. 22.
    Métivier, M.: Stochastic partial differential equations in infinite dimensional spaces. Scuola Normale Superiore, Pisa (1988)zbMATHGoogle Scholar
  23. 23.
    Métivier, M., Viot, M.: On weak solutions of stochastic partial differential equations. Lect. Notes Math. 1322/1988, 139–150 (1988)CrossRefGoogle Scholar
  24. 24.
    Mikulevicius, R., Rozovskii, B.L.: Global L 2-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33(1), 137–176 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Motyl, E.: Martingale Solutions to the 2D and 3D Stochastic Navier–Stokes Equations Driven by the Compensated Poisson Random Measure, Preprint 13. Department of Mathematics and Computer Sciences, Lodz University (2011)Google Scholar
  26. 26.
    Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge, UK (2007)zbMATHCrossRefGoogle Scholar
  27. 27.
    Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. North Holland Publishing Company, Amsterdam - New York - Oxford (1979)zbMATHGoogle Scholar
  28. 28.
    Vishik, M.J., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Dordrecht (1988)zbMATHCrossRefGoogle Scholar
  29. 29.
    Xu, T., Zhang, T.: Large deviation principle for 2-D stochastic Navier–Stokes equations driven by Lévy processes. J. Funct. Anal. 257, 1519–1545 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Mathematics and Computer SciencesLodz UniversityŁódźPoland

Personalised recommendations