Potential Analysis

, Volume 38, Issue 3, pp 741–752 | Cite as

Multipliers and Morrey Spaces

Article

Abstract

We study the pointwise multipliers from one Morrey space to another Morrey space. We give a necessary and sufficient condition to grant that the space of those multipliers is a Morrey space as well.

Keywords

Morrey spaces Hausdorff measure Trace inequalities Interpolation 

Mathematics Subject Classification (2010)

42B35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, D.R.: On the existence of capacitary strong type estimates in IRn. Ark. Mat. 14, 125–140 (1976)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Burenkov, V.I., Nursultanov, E.D.: Description of interpolation spaces for local Morrey-type spaces. Proc. Steklov Inst. Math. 269 (2010), 46–56MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fefferman, C.L.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kerman, R., Sawyer, E.: The trace inequality and eigenvalue estimates for Schrödinger operators. Ann. Inst. Fourier 36, 207–228 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Maz’ya, V.G.: On the theory of the n-dimensional Schrödinger operator. Izv. Akad. Nauk SSSR, Ser. Mat. 28, 1145—1172 (1964). In RussianMathSciNetMATHGoogle Scholar
  6. 6.
    Maz’ya, V.G., Shaposhnikova, T.O.: The Theory of Multipliers in Spaces of Differentiable Functions. Pitman, New-York (1985)Google Scholar
  7. 7.
    Meyers, N.G.: A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand. 26, 255–292 (1970)MathSciNetMATHGoogle Scholar
  8. 8.
    Peetre, J.: On the theory of \({\cal L}_{p,\lambda}\) spaces. J. Funct. Anal. 4, 71–87 (1969)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ruiz, A., Vega, L.: Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation of Morrey spaces. Publ. Mat. 39, 404–411 (1995)MathSciNetGoogle Scholar
  10. 10.
    Sawano, Y., Sugano, S., Tanaka, H.: Orlicz–Morrey spaces and fractional operators. Potential Anal. 36, 517–556 (2012). doi:10.1007/s11118-011-9239-8 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Spanne, S.: Sur l’interpolation entre les espaces \({\cal L}^{p\Phi}_k\). Ann. Sc. Norm. Super. Pisa 20, 625–648 (1966)MathSciNetMATHGoogle Scholar
  12. 12.
    Yang, Q.X.: Characterization of multiplier spaces by wavelets and logarithmic Morrey spaces. Preprint, Wu Han University (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratoire Analyse et ProbabilitésUniversité d’Évry Val d’EssonneÉvryFrance

Personalised recommendations