Advertisement

Potential Analysis

, Volume 38, Issue 3, pp 711–739 | Cite as

Variation Operators for Semigroups and Riesz Transforms on BMO in the Schrödinger Setting

  • Jorge J. Betancor
  • Juan C. Fariña
  • Eleonor Harboure
  • Lourdes Rodríguez-MesaEmail author
Article

Abstract

In this paper we prove that the variation operators of the heat semigroup and the truncations of Riesz transforms associated to the Schrödinger operator are bounded on a suitable BMO type space.

Keywords

Schrödinger operators Variation Riesz transforms Heat semigroups 

Mathematics Subject Classifications (2000)

42B20 42B25 40A30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennet, C., DeVore, R.A., Sharpley, R.: Weak-L and BMO. Ann. Math. (2) 113(3), 601–611 (1981)CrossRefGoogle Scholar
  2. 2.
    Betancor, J.J., Fariña, J.C., Harboure, E., Rodríguez-Mesa, L.: L p-boundedness properties of variation and oscillation operators in the Schrödinger setting. Rev. Mat. Complut. (2012). doi: 10.1007/s13163-012-0094-y
  3. 3.
    Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 348(1), 12–27 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bongioanni, B., Harboure, E., Salinas, O.: Riesz transform related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357, 115–131 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transform related to Schrödinger operators. J. Fourier Anal. Appl. 17(1), 115–134 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Publ. Math. IHES 69, 5–45 (1989)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105(1), 59–83 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355(5), 2115–2137 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Crescimbeni, R., Macías, R.A., Menárguez, T., Torrea, J.L., Viviani, B.: The ρ-variation as an operator between maximal operators and singular integrals. J. Evol. Equ. 9(1), 81–102 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Crescimbeni, R., Martín-Reyes, F., de la Torre, A., Torrea, J.L.: The ρ-variation of the Hermitian Riesz transform. Acta Math. Sin. Engl. Ser. 26(10), 1827–1838 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dong, J.-F., Liu, H.-P.: The BMO L space and Riesz transforms associated with Schrödinger operators. Acta Math. Sin. 26(4), 659–668 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dziubański, J., Zienkiewicz, J.: Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dziubański, J., Zienkiewicz, J.: H p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics, vol. 56, pp. 45–53. Banach Center Publications (2002)Google Scholar
  14. 14.
    Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249(2), 329–356 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dziubański, J., Zienkiewicz, J.: H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98(1), 5–38 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gehring, F.W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gillespie, T.A., Torrea, J.L.: Dimension free estimates for the oscillation of Riesz transforms. Isr. J. Math. 141, 125–144 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Guo, Z., Li, P., Peng, L.: L p boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341, 421–432 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Harboure, E., Macías, R., Menárguez, T., Torrea, J.L.: Oscillation and variation for the Gaussian Riesz transforms and Poisson integral. Proc. R. Soc. Edinb. Sect. A 135(1), 85–104 (2005)zbMATHCrossRefGoogle Scholar
  20. 20.
    Jones, R.L., Wang, G.: Variation inequalities for the Fejer and Poisson kernels. Trans. Am. Math. Soc. 356(11), 4493–4518 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Jones, R.L., Kaufman, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 18(4), 889–936 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Jones, R.L., Reinhold, K.: Oscillation and variation inequalities for convolution powers. Ergod. Theory Dyn. Syst. 21(6), 1809–1829 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360(12), 6711–6742 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Liu, Y., Ding, Y.: Some estimates of Schrödinger-type operators with certain nonnegative potentials. Int. J. Math. Math. Sci., article ID 214030, 8 pp. (2008). doi: 10.1155/2008/214030
  25. 25.
    Liu, Y., Dong, J.: Some estimates of higher order Riesz transform related to Schrödinger-type operators. Potential Anal. 32(1), 41–55 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. 14(2), 421–464 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Shen, Z.W.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43, xiv+695 (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, IIIGoogle Scholar
  29. 29.
    Sugano, S.: L p estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J. Math. 30, 179–197 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Dover, Mineola (2004)zbMATHGoogle Scholar
  31. 31.
    Yang, D., Yang, D.: Characterizations of localized BMO\(({\mathbb R}^n)\) via commutators of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Collect. Math. 61(1), 65–79 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Yang, D., Yang, D., Zhou, Y.: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. 30, 271–300 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Zhong, J.: Harmonic analysis for some Schrödinger type operators. Ph.D. thesis, Princeton University (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jorge J. Betancor
    • 1
  • Juan C. Fariña
    • 1
  • Eleonor Harboure
    • 2
  • Lourdes Rodríguez-Mesa
    • 1
    Email author
  1. 1.Departamento de Análisis MatemáticoUniversidad de la LagunaLa Laguna (Sta. Cruz de Tenerife)Spain
  2. 2.Instituto de Matemática Aplicada del Litoral, IMALCONICET-Universidad Nacional del LitoralSanta FeArgentina

Personalised recommendations