Advertisement

Potential Analysis

, Volume 38, Issue 2, pp 537–548 | Cite as

On the Exit Distribution of Partially Reflected Brownian Motion in Planar Domains

  • Athanasios BatakisEmail author
  • Viet Hung Nguyen
Article
  • 83 Downloads

Abstract

We show that the dimension of the exit distribution of planar partially reflected Brownian motion can be arbitrarily close to 2.

Keywords

Reflected Brownian motion Harmonic measure Fractal domains Hausdorff dimension 

Mathematics Subject Classifications (2010)

31A15 30C85 60J65 60J50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancona, A.: Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien. Ann. Inst. Fourier, Grenoble 28(4), 169–213 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ancona, A.: Théorie du potentiel sur les graphes et les variétés. In: Ecole d’été de probabilités de Saint-Flour XVII. Lecture Notes in Mathematics, vol. 1427. Springer-Verlag, Berlin (1990)Google Scholar
  3. 3.
    Burdzy, K., Z-Chen, Q., Marshall, D.: Traps for reflected Brownian motion. Math. Z. 252(1), 103–132 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benjamini, I., Z-Chen, Q., Rohde, S.: Boundary trace of reflecting brownian motions. Probab. Theory Related Fields 129(1), 1–17 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bass, R.F., Hsu, P.: Some potential theory for reflecting brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19, 1617–1631 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Batakis, A., Levitz, P., Zinsmeister, M.: Brownian flights. PAMQ 7(1), 87–105 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bourgain, J.: On the Hausdorff dimension of harmonic measure in higher dimension. Invent. Math. 87, 477–483 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Batakis, A., Zinsmeister, M.: Invariant measures for intermittent transport (2011, under redaction)Google Scholar
  9. 9.
    Z-Chen, Q.: On reflecting diffusions processes and skorohod decompositions. Probab. Theory Related Fields 94, 281–351 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Studies in Mathematics, vol. 19. de Gruyter (1994)Google Scholar
  11. 11.
    Garnett, J., Marshall, D.: Harmonic Measure. New Math Monographs. Cambridge University Press (2005)Google Scholar
  12. 12.
    Hörmander, L.: Notions of Convexity. Birkhauser-Verlag Basel (1994)Google Scholar
  13. 13.
    Jones, P.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jones, P., Wolff, T.: Hausdorff dimension of harmonic measures in the plane. Acta Math. 161, 131–144 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lewis, J., Verchota, G., Vogel, A.: On Wolff snowflakes. Pacific J. Math. 218, 139–166 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Makarov, N.G.: On the distortion of boundary sets under conformal mappings. Proc. London Math. Soc. 51(3), 369–384 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wolff, T.: Counterexamples with harmonic gradients. In: Essays on Fourier Analysis in honor of Elias Stein. Princeton University Press (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.MAPMOUniversity of OrleansOrleans cedex 2France

Personalised recommendations