Potential Analysis

, Volume 37, Issue 3, pp 281–301 | Cite as

Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces

  • Renjin Jiang


Let (X, d) be a pathwise connected metric space equipped with an Ahlfors Q-regular measure μ, Q ∈ [1, ∞ ). Suppose that (X, d, μ) supports a 2-Poincaré inequality and a Sobolev–Poincaré type inequality for the corresponding “Gaussian measure”. The author uses the heat equation to study the Lipschitz regularity of solutions of the Poisson equation Δu = f, where \(f\in L^{p}_{\rm{loc}}\). When p > Q, the local Lipschitz continuity of u is established.


Lipschitz regularity Poincaré inequality Newtonian space Heat kernel Poisson equation 

Mathematics Subject Classifications (2010)

31C25 31B05 35B05 35B45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakry, D.: On Sobolev and Logarithmic Inequalities for Markov Semigroups, New Trends in Stochastic Analysis (Charingworth, 1994), pp. 43–75. World Scientific Publishing, River Edge, NJ (1997)Google Scholar
  2. 2.
    Bakry, D., Emery, M.: Diffusions hypercontractives. Sémin. Probab. XIX, 177–206 (1983/84)Google Scholar
  3. 3.
    Biroli, M., Mosco, U.: Sobolev inequalities for Dirichlet forms on homogeneous spaces. Boundary value problems for partial differential equations and applications. RMA Res. Notes Appl. Math., vol. 29, pp. 305–311. Masson, Paris (1993)Google Scholar
  4. 4.
    Biroli, M., Mosco, U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. 169, 125–181 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Caffarelli, L.A., Kenig, C.E.: Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Am. J. Math. 120, 391–439 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28(3), 333–354 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. In: de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)Google Scholar
  9. 9.
    Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)CrossRefGoogle Scholar
  10. 10.
    Gross, L.: Hypercontractivity over complex manifolds. Acta Math. 182, 159–206 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hajłasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320(10), 1211–1215 (1995)zbMATHGoogle Scholar
  12. 12.
    Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688) (2000)Google Scholar
  13. 13.
    Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12(3), 233–247 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Koskela, P., Rajala, K., Shanmugalingam, N.: Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal. 202, 147–173 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sturm, K.T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations