Potential Analysis

, Volume 36, Issue 1, pp 137–153 | Cite as

Comparison of Exit Moment Spectra for Extrinsic Metric Balls



We prove explicit upper and lower bounds for the L1-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds Pm in ambient Riemannian spaces Nn. We assume that P and N both have controlled radial curvatures (mean curvature and sectional curvature, respectively) as viewed from a pole in N. The bounds for the exit moment spectra are given in terms of the corresponding spectra for geodesic metric balls in suitably warped product model spaces. The bounds are sharp in the sense that equalities are obtained in characteristic cases. As a corollary we also obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds Nn themselves.


Riemannian submanifolds Extrinsic balls Torsional rigidity L1-moment spectra Exit time Isoperimetric inequalities 

Mathematics Subject Classifications (2010)

Primary 53C42 58J65 35J25 60J65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandle, C.: Isoperimetric Inequalities and Applications. Pitman Publishing Inc. (1980)Google Scholar
  2. 2.
    Bañuelos, R., van den Berg, M., Carroll, T.: Torsional rigidity and expected lifetime of Brownian motion. J. Lond. Math. Soc. 66(2), 499–512 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press (1984)Google Scholar
  4. 4.
    Chavel, I.: Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives. Cambridge Tracts in Mathematics, vol. 145. Cambridge University Press (2001)Google Scholar
  5. 5.
    Cheng, S.Y., Li, P., Yau, S.T.: Heat equations on minimal submanifolds and their applications. Am. J. Math. 106, 1033–1065 (1984)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    DoCarmo, M.P., Warner, F.W.: Rigidity and convexity of hypersurfaces in spheres. J. Differ. Geom. 4, 133–144 (1970)MathSciNetGoogle Scholar
  7. 7.
    Dynkin, E.B.: Markov Processes. Springer (1965)Google Scholar
  8. 8.
    Greene, R., Wu, H.: Function Theory on Manifolds which Possess a Pole. Lecture Notes in Math., vol. 699. Springer, Berlin and New York (1979)MATHGoogle Scholar
  9. 9.
    Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Has’minskii, R.Z.: Probabilistic representation of the solution of some differential equations. In: Proc. 6th All Union Conf. on Theor. Probability and Math. Statist. (Vilnius 1960) (1960)Google Scholar
  11. 11.
    Hurtado, A., Markvorsen, S., Palmer, V.: Torsional rigidity of submanifolds with controlled geometry. Math. Ann. 344, 511–542 (2009)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Jorge, L.P., Koutroufiotis, D.: An estimate for the curvature of bounded submanifolds. Am. J. Math. 103, 711–725 (1981)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kinateder, K.K.J., McDonald, P.: Variational principles for average exit time moments for diffusions in Euclidean space. Proc. Am. Math. Soc. 127, 2767–2772 (1999)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kinateder, K.K.J., McDonald, P., Miller, D.: Exit time moments, boundary value problems, and the geometry of domains in Euclidean space. Probab. Theory Relat. Fields 111, 469–487 (1998)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Markvorsen, S.: On the mean exit time from a minimal submanifold. J. Differ. Geom. 29, 1–8 (1989)MATHMathSciNetGoogle Scholar
  16. 16.
    Markvorsen, S.: On the heat kernel comparison theorems for minimal submanifolds. Proc. Am. Math. Soc. 97, 479–482 (1986)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Markvorsen, S., Min-Oo, M.: Global Riemannian Geometry: Curvature and Topology. Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, Berlin (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Markvorsen, S., Palmer, V.: Generalized isoperimetric inequalities for extrinsic balls in minimal submanifolds. J. Reine Angew. Math. 551, 101–121 (2002)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Markvorsen, S., Palmer, V.: Transience and capacity of minimal submanifolds. GAFA, Geom. Funct. Anal. 13, 915–933 (2003)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Markvorsen, S., Palmer, V.: How to obtain transience from bounded radial mean curvature. Trans. Am. Math. Soc. 357, 3459–3479 (2005)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Markvorsen, S., Palmer, V.: Torsional rigidity of minimal submanifolds. Proc. Lond. Math. Soc. 93, 253–272 (2006)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Markvorsen, S., Palmer, V.: Extrinsic isoperimetric analysis on submanifolds with curvatures bounded from below. J. Geom. Anal. 20, 388–421 (2010)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    McDonald, P.: Isoperimetric conditions, Poisson problems, and diffusions in Riemannian manifolds. Potential Anal. 16, 115–138 (2002)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Milnor, J.: Morse Theory. Annals of Mathematics Studies, Number 51. Princeton University Press (1963)Google Scholar
  25. 25.
    O’Neill, B.: Semi-Riemannian Geometry; with Applications to Relativity. Academic Press (1983)Google Scholar
  26. 26.
    Palmer, V.: Mean exit time from convex hypersurfaces. Proc. Am. Math. Soc. 126, 2089–2094 (1998)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Palmer, V.: Isoperimetric inequalities for extrinsic balls in minimal submanifolds and their applications. J. Lond. Math. Soc. 60(2), 607–616 (1999)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press (1951)Google Scholar
  29. 29.
    Pólya, G.: Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Q. Appl. Math. 6, 267–277 (1948)MATHGoogle Scholar
  30. 30.
    Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society (1996)Google Scholar
  31. 31.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish Inc., Houston (1979)Google Scholar
  32. 32.
    van den Berg, M., Gilkey, P.B.: Heat content and Hardy inequality for complete Riemannian manifolds. Bull. Lond. Math. Soc. 36, 577–586 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain
  2. 2.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  3. 3.Departament de Matemàtiques-Institute of New Imaging TechnologiesUniversitat Jaume ICastellónSpain

Personalised recommendations