Potential Analysis

, Volume 34, Issue 3, pp 223–242 | Cite as

Hardy–Sobolev Type Inequalities with Sharp Constants in Carnot–Carathéodory Spaces

  • Donatella Danielli
  • Nicola Garofalo
  • Nguyen Cong Phuc


We prove a generalization with sharp constants of a classical inequality due to Hardy to Carnot groups of arbitrary step, or more general Carnot–Carathéodory spaces associated with a system of vector fields of Hörmander type. Under a suitable additional assumption (see Eq. 1.6 below) we are able to extend such result to the nonlinear case \(p\not= 2\). We also obtain a sharp inequality of Hardy–Sobolev type.


Hardy type inequalities Carnot groups Carnot–Carathéodory spaces Horizontal p-Laplacian 

Mathematics Subject Classifications (2010)

35H20 35H30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ancona, A.: On strong barriers and an inequality of Hardy for domains in \(R^{n}\). J. Lond. Math. Soc. (2) 34(2), 274–290 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Arcozzi, N., Ferrari, F.: The Hessian of the distance from a surface in the Heisenberg group. Ann. Acad. Sci. Fenn. Math. 33(1), 35–63 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    Baras, P., Goldstein, J.A.: The heat equation with a singular potential. Trans. Am. Math. Soc. 284(1), 121–139 (1984)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(L^{p}\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brezis, H., Marcus, M.: Hardy’s inequalities revisited (Dedicated to Ennio De Giorgi). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 217–237 (1997, 1998)MathSciNetMATHGoogle Scholar
  6. 6.
    Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)MathSciNetMATHGoogle Scholar
  7. 7.
    Capogna, L., Danielli, D., Garofalo, N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Commun. Partial Differ. Equ. 18(9–10), 1765–1794 (1993)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Am. Math. J. 118(6), 1153–1196 (1997)MathSciNetGoogle Scholar
  9. 9.
    D’Ambrosio, L.: Hardy inequalities related to Grushin type operators. Proc. Am. Math. Soc. 132(3), 725–734 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D’Ambrosio, L.: Hardy type inequalities related to second order degenerate differential operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 5 IV (2005), 451–486 (2005)MathSciNetGoogle Scholar
  11. 11.
    D’Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(3), 451–486 (2005)MathSciNetMATHGoogle Scholar
  12. 12.
    Danielli, D.: A Fefferman–Phong type inequality and applications to quasilinear subelliptic equations. Potential Anal. 11, 387–413 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Danielli, D., Garofalo, N., Marola, N.: Local behavior of p-harmonic Green’s functions in metric spaces. Potential Anal. 32, 343–362 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Danielli, D., Garofalo, N., Nhieu, D.M.: Trace inequalities for Carnot–Carathéodory spaces and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 27(2), 195–252 (1998)MathSciNetMATHGoogle Scholar
  15. 15.
    Danielli, D., Garofalo, N., Nhieu, D.M.: Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot–Carathéodory spaces. Mem. Am. Math. Soc. 182(857), x+119 (2006)MathSciNetGoogle Scholar
  16. 16.
    Danielli, D., Garofalo, N., Phuc, N.C.: Inequalities of Hardy–Sobolev type in Carnot–Carathéodory spaces. In: Sobolev Spaces in Mathematics, vol. I (dedicated to the centenary of Sergey Sobolev) International Mathematical Series, vols. 8–10. Springer, New York (2008)Google Scholar
  17. 17.
    Donnelly, H., Garofalo, N.: Schrödinger operators on manifolds, essential self-adjointness, and absence of eigenvalues. J. Geom. Anal. 7(2), 241–257 (1997)MathSciNetMATHGoogle Scholar
  18. 18.
    Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Math. Monographs. Oxford Univ. Press, Oxford (1987)Google Scholar
  19. 19.
    Folland, G.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Boll. Unione Mat. Ital. B (7) 11(1), 83–117 (1997)MathSciNetMATHGoogle Scholar
  22. 22.
    Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40(2), 313–356 (1990)MathSciNetMATHGoogle Scholar
  23. 23.
    Garofalo, N., Lin, F.H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Garofalo, N., Marola, N.: Sharp capacitary estimates for rings in metric spaces. Houst. J. Math. (2010, in press)Google Scholar
  25. 25.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Garofalo, N., Nhieu, D.M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot–Carathéodory spaces. J. Anal. Math. 74, 67–97 (1998)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gazzola, F., Grunau, H.-C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356(6), 2149–2168 (2004)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Goldstein, J.A., Kombe, I.: The Hardy inequality and nonlinear parabolic equations on Carnot groups. Nonlinear Anal. 69(12), 4643–4653 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Goldstein, J., Zhang, Q.S.: On a degenerate heat equation with a singular potential. J. Funct. Anal. 186(2), 342–359 (2001)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hardy, G.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Heinonen, J., Holopainen, I.: Quasiregular maps on Carnot groups. J. Geom. Anal. 7(1), 109–148 (1997)MathSciNetMATHGoogle Scholar
  32. 32.
    Hörmander, H.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 189(2), 539–548 (2002)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 74, 1–45 (1990)MathSciNetGoogle Scholar
  35. 35.
    Holopainen, I., Shanmugalingam, N.: Singular functions on metric measure spaces. Collect. Math. 53, 313–332 (2002)MathSciNetMATHGoogle Scholar
  36. 36.
    Kadlec, J., Kufner, A.: Characterization of functions with zero traces by integrals with weight functions. Cas. Pest. Mat. 91, 463–471 (1966)MathSciNetMATHGoogle Scholar
  37. 37.
    Kinnunen, J., Martio, O.: Hardy’s inequalities for Sobolev functions. Math. Res. Lett. 4, 489–500 (1997)MathSciNetMATHGoogle Scholar
  38. 38.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)MATHCrossRefGoogle Scholar
  39. 39.
    Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308(1), 177–196 (1988)MATHCrossRefGoogle Scholar
  40. 40.
    Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardy’s inequality in ℝn. Trans. Am. Math. Soc. 350(8), 3237–3255 (1998)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Miklyukov, V.M.: The Hardy inequality for functions with generalized derivatives on Riemannian manifolds (Russian). Theory of the approx. of functions (Russian) (Donetsk, 1998), Tr. Inst. Prikl. Mat. Meh. Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk 3, 158–172 (1998)MathSciNetMATHGoogle Scholar
  42. 42.
    Miklyukov, V.M., Vuorinen, M.K.: Hardy’s inequality for \(W_{0}^{1,p}\)-functions on Riemannian manifolds. Proc. Am. Math. Soc. 127(9), 2745–2754 (1999)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Monti, R., Serra Cassano, F.: Surface measures in Carnot–Carathéodory spaces. Calc. Var. Partial Differ. Equ. 13(3), 339–376 (2001)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129(12), 3623–3630 (2001)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Opic, B., Kufner, A.: Hardy-type inequalities. In: Pitman Research Notes in Math., vol. 219. Longman, Harlow (1990)Google Scholar
  47. 47.
    Reed, M., Simon, B.: Meth. of Modern Math. Physics: Fourier Analysis, Self-Adjointness. Academic, New York (1975)Google Scholar
  48. 48.
    Sanchez-Calle, A.: Fundamental solutions and geometry of sum of squares of vector fields. Invent. Math 78, 143–160 (1984)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Vassilev, D.: Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups. Pacific J. Math. 227, 361 (2004)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhong, X.: On nonhomogeneous quasilinear elliptic equations. Ann. Acad. Sci. Fenn. Math. Diss. 117, 46 (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Donatella Danielli
    • 1
  • Nicola Garofalo
    • 1
  • Nguyen Cong Phuc
    • 2
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations