Potential Analysis

, Volume 34, Issue 1, pp 89–100 | Cite as

A Montel Type Result for Super-Polyharmonic Functions on R N

  • Toshihide Futamura
  • Keiji Kitaura
  • Yoshihiro Mizuta


Our aim in this paper is to discuss a Montel type result for a family \({\mathcal F}\) of super-polyharmonic functions on R N . We give a condition on spherical means to assure that \({\mathcal F}\) contains a sequence converging outside a set of capacity zero.


Polyharmonic functions Super-polyharmonic functions Spherical means Riesz decomposition 

Mathematics Subject Classifications (2010)

Primary 31B30 31B05 31B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abkar, A., Hedenmalm, H.: A Riesz representation formula for super-biharmonic functions. Ann. Acad. Sci. Fenn., Math. 26, 305–324 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, M., Baernstein, A.: The size of the set on which a meromorphic function is large. Proc. Lond. Math. Soc. 36, 518–539 (1978)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon Press (1983)Google Scholar
  4. 4.
    Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)MATHGoogle Scholar
  5. 5.
    Futamura, T., Kitaura, K., Mizuta, Y.: Isolated singularities, growth of spherical means and Riesz decomposition for superbiharmonic functions. Hiroshima Math. J. 38, 231–241 (2008)MATHMathSciNetGoogle Scholar
  6. 6.
    Futamura, T., Mizuta, Y.: Isolated singularities of super-polyharmonic functions. Hokkaido Math. J. 33, 675–695 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)Google Scholar
  8. 8.
    Hayman, W.K., Korenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. Anal. Math. 60, 113–133 (1993)MATHMathSciNetGoogle Scholar
  9. 9.
    Kitaura, K., Mizuta, Y.: Spherical means and Riesz decomposition for superbiharmonic functions. J. Math.Soc. Jpn. 58, 521–533 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kondratyuk, A.A., Tarasyuk, S.I.: Compact Operators and Normal Families of Subharmonic Functions. Function Spaces, Differential Operators and Nonlinear Analysis (Paseky nad Jizerou, 1995), pp. 227–231 . Prometheus, Prague (1996)Google Scholar
  11. 11.
    Landkof, N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg (1972)Google Scholar
  12. 12.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)Google Scholar
  13. 13.
    Mizuta, Y.: An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures. Hiroshima Math. J. 27, 415–427 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakkōtosyo, Tokyo (1996)Google Scholar
  15. 15.
    Pizetti, P.: Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera. Rend. Lincei 5, 309–316 (1909)Google Scholar
  16. 16.
    Schiff, J.L.: Normal Families. Springer, New York (1993)MATHGoogle Scholar
  17. 17.
    Supper, R.: Subharmonic functions of order less than one, Potential Anal. 23, 165–179 (2005)Google Scholar
  18. 18.
    Supper, R.: A Montel type result for subharmonic functions. Boll. Unione Mat. Ital. 2, 423–444 (2009)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Toshihide Futamura
    • 1
  • Keiji Kitaura
    • 2
  • Yoshihiro Mizuta
    • 3
  1. 1.Department of MathematicsDaido UniversityNagoyaJapan
  2. 2.Department of Mathematics, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Department of MathematicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations