Potential Analysis

, Volume 34, Issue 1, pp 57–79 | Cite as

On the Volume of the Intersection of Two Independent Wiener Sausages



The expected volume of intersection of two independent Wiener sausages in ℝ m , m ≥ 3, up to time t, and associated to non-polar, compact sets K 1 and K 2 respectively, is obtained in the limit of large t.


Wiener sausage Heat equation Last exit time 

Mathematics Subject Classifications (2010)

35K20 60J65 60J45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., Zhou, X.Y.: Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45, 195–237 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    van den Berg, M.: On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222, 114–128 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    van den Berg, M.: On the volume of intersection of three independent Wiener sausages. Annales de L’Institut Henri Poincaré, B. Probabilités et Statistiques 46, 313–337 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1992)Google Scholar
  5. 5.
    Fernández, R., Fröhlich, J., Sokal, A.D.: Random walks, critical phenomena and triviality in quantum field theory. In: Texts and Monographs in Physics. Springer, New York (1992)Google Scholar
  6. 6.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, San Diego (1994)MATHGoogle Scholar
  7. 7.
    Lawler, G.: Intersections of random walks. In: Probability and its Applications. Birkhäuser, Boston (1991)Google Scholar
  8. 8.
    Le Gall, J.-F.: Sur une conjecture de M. Kac. Probab. Theory Relat. Fields 78, 389–402 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Le Gall, J.-F.: Wiener sausage and self-intersection local time. J. Funct. Anal. 88, 299–341 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston, (1993)MATHGoogle Scholar
  11. 11.
    Port, S.C.: Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18, 492–523 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Port, S.C.: Spitzer’s formula involving capacity. Prog. Probab. 28, 373–388 (1991)MathSciNetGoogle Scholar
  13. 13.
    Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic, New York (1967)Google Scholar
  14. 14.
    Spitzer, F.: Electrostatic capacity, heat flow and Brownian motion. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 110–121 (1964)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BristolBristolUK

Personalised recommendations